Richard L Mccreery

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3027500/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Hot hole transfer from Ag nanoparticles to multiferroic YMn ₂ O ₅ nanowires enables superior photocatalytic activity. Journal of Materials Chemistry C, 2022, 10, 4128-4139.	5.5	7
2	A Simple, Semiclassical Mechanism for Activationless, Long RangeCharge Transport in Molecular Junctions. ECS Journal of Solid State Science and Technology, 2022, 11, 045009.	1.8	1
3	Hot carrier photocatalysis using bimetallic Au@Pt hemispherical core–shell nanoislands. Journal of Materials Science: Materials in Electronics, 2022, 33, 18134-18155.	2.2	2
4	Evaluation of Carbon Based Molecular Junctions as Practical Photosensors. ACS Sensors, 2021, 6, 513-522.	7.8	11
5	Carbon Electrodes: Structural Effects on Electron Transfer Kinetics. , 2021, , 221-374.		20
6	Electrostatic Redox Reactions and Charge Storage in Molecular Electronic Junctions. Journal of Physical Chemistry C, 2020, 124, 1739-1748.	3.1	9
7	Photostimulated Near-Resonant Charge Transport over 60 nm in Carbon-Based Molecular Junctions. Journal of the American Chemical Society, 2020, 142, 15420-15430.	13.7	15
8	Molecular Junctions: Molecular Signature and Activationless Transport in Cobaltâ€Terpyridineâ€Based Molecular Junctions (Adv. Electron. Mater. 7/2020). Advanced Electronic Materials, 2020, 6, 2070033.	5.1	1
9	Comment on "Extent of conjugation in diazonium-derived layers in molecular junction devices determined by experiment and modelling―by C. Van Dyck, A. J. Bergren, V. Mukundan, J. A. Fereiro and G. A. DiLabio, Phys. Chem. Chem. Phys., 2019, 21, 16762. Physical Chemistry Chemical Physics, 2020, 22, 21543-21546.	2.8	1
10	Solid-State Protein Junctions: Cross-Laboratory Study Shows Preservation of Mechanism at Varying Electronic Coupling. IScience, 2020, 23, 101099.	4.1	30
11	Evaluation of the electroanalytical performance of carbon-on-gold films prepared by electron-beam evaporation. Analyst, The, 2020, 145, 5041-5052.	3.5	1
12	Ion-Assisted Resonant Injection and Charge Storage in Carbon-Based Molecular Junctions. Journal of the American Chemical Society, 2020, 142, 11658-11662.	13.7	19
13	Redox Flow Batteries: How to Determine Electrochemical Kinetic Parameters. ACS Nano, 2020, 14, 2575-2584.	14.6	118
14	Large Capacity Enhancement of Carbon Electrodes by Solution Processing for High Density Energy Storage. ACS Applied Materials & Interfaces, 2020, 12, 10211-10223.	8.0	10
15	Molecular Signature and Activationless Transport in Cobaltâ€Terpyridineâ€Based Molecular Junctions. Advanced Electronic Materials, 2020, 6, 1901416.	5.1	27
16	Introducing mesoscopic charge transfer rates into molecular electronics. Physical Chemistry Chemical Physics, 2020, 22, 10828-10832.	2.8	14
17	Lightâ€6timulated Charge Transport in Bilayer Molecular Junctions for Photodetection. Advanced Optical Materials, 2019, 7, 1901053.	7.3	20
18	Unipolar Injection and Bipolar Transport in Electroluminescent Ru-Centered Molecular Electronic Junctions, Journal of Physical Chemistry C, 2019, 123, 29162-29172.	3.1	10

#	Article	IF	CITATIONS
19	Hubbard Nonequilibrium Green's Function Analysis of Photocurrent in Nitroazobenzene Molecular Junction. Journal of Physical Chemistry Letters, 2019, 10, 1550-1557.	4.6	9
20	Hole free phase plate tomography for materials sciences samples. Micron, 2019, 116, 54-60.	2.2	8
21	Long-Range Activationless Photostimulated Charge Transport in Symmetric Molecular Junctions. ACS Nano, 2019, 13, 867-877.	14.6	22
22	Photocurrent, Photovoltage, and Rectification in Largeâ€Area Bilayer Molecular Electronic Junctions. Advanced Electronic Materials, 2018, 4, 1800093.	5.1	14
23	Bottom-up, Robust Graphene Ribbon Electronics in All-Carbon Molecular Junctions. ACS Applied Materials & Interfaces, 2018, 10, 6090-6095.	8.0	23
24	Orbital Control of Photocurrents in Large Area All-Carbon Molecular Junctions. Journal of the American Chemical Society, 2018, 140, 1900-1909.	13.7	31
25	Nanometric building blocks for robust multifunctional molecular junctions. Nanoscale Horizons, 2018, 3, 45-52.	8.0	20
26	Orbital Control of Long-Range Transport in Conjugated and Metal-Centered Molecular Electronic Junctions. Journal of Physical Chemistry C, 2018, 122, 29028-29038.	3.1	16
27	Hole Free Phase Plate Electron Tomography in Material Sciences. Microscopy and Microanalysis, 2018, 24, 2224-2225.	0.4	2
28	Hybrid Graphene Ribbon/Carbon Electrodes for Highâ€₽erformance Energy Storage. Advanced Energy Materials, 2018, 8, 1802439.	19.5	23
29	Internal Electric Field Modulation in Molecular Electronic Devices by Atmosphere and Mobile Ions. Journal of the American Chemical Society, 2018, 140, 7239-7247.	13.7	29
30	Self-Inhibitory Electron Transfer of the Co(III)/Co(II)-Complex Redox Couple at Pristine Carbon Electrode. Analytical Chemistry, 2018, 90, 11115-11123.	6.5	19
31	Structure Controlled Long-Range Sequential Tunneling in Carbon-Based Molecular Junctions. ACS Nano, 2017, 11, 3542-3552.	14.6	38
32	Characterization of Growth Patterns of Nanoscale Organic Films on Carbon Electrodes by Surface Enhanced Raman Spectroscopy. Analytical Chemistry, 2017, 89, 6463-6471.	6.5	26
33	Robust Bipolar Light Emission and Charge Transport in Symmetric Molecular Junctions. Journal of the American Chemical Society, 2017, 139, 7436-7439.	13.7	55
34	Control of Rectification in Molecular Junctions: Contact Effects and Molecular Signature. Journal of the American Chemical Society, 2017, 139, 11913-11922.	13.7	61
35	Ultraflat, Pristine, and Robust Carbon Electrode for Fast Electron-Transfer Kinetics. Analytical Chemistry, 2017, 89, 13532-13540.	6.5	22
36	Effects of electronic coupling and electrostatic potential on charge transport in carbon-based molecular electronic junctions. Beilstein Journal of Nanotechnology, 2016, 7, 32-46.	2.8	21

#	Article	IF	CITATIONS
37	Monitoring of Energy Conservation and Losses in Molecular Junctions through Characterization of Light Emission. Advanced Electronic Materials, 2016, 2, 1600351.	5.1	19
38	Control of Electronic Symmetry and Rectification through Energy Level Variations in Bilayer Molecular Junctions. Journal of the American Chemical Society, 2016, 138, 12287-12296.	13.7	70
39	Robust All-Carbon Molecular Junctions on Flexible or Semi-Transparent Substrates Using "Process-Friendly―Fabrication. ACS Nano, 2016, 10, 8918-8928.	14.6	61
40	Musical molecules: the molecular junction as an active component in audio distortion circuits. Journal of Physics Condensed Matter, 2016, 28, 094011.	1.8	50
41	Light Emission as a Probe of Energy Losses in Molecular Junctions. Journal of the American Chemical Society, 2016, 138, 722-725.	13.7	29
42	Theoretical Modeling of Tunneling Barriers in Carbon-Based Molecular Electronic Junctions. Journal of Physical Chemistry C, 2015, 119, 11286-11295.	3.1	13
43	Internal Photoemission in Molecular Junctions: Parameters for Interfacial Barrier Determinations. Journal of the American Chemical Society, 2015, 137, 1296-1304.	13.7	34
44	The Scope of Analytical Chemistry. Analytical Chemistry, 2015, 87, 6425-6425.	6.5	4
45	Proton Transport Property in Supported Nafion Nanothin Films by Electrochemical Impedance Spectroscopy. Journal of the Electrochemical Society, 2014, 161, F1395-F1402.	2.9	157
46	Ion Transport and Switching Speed in Redox-Gated 3-Terminal Organic Memory Devices. Journal of the Electrochemical Society, 2014, 161, H831-H838.	2.9	21
47	Role of surface contaminants, functionalities, defects and electronic structure: general discussion. Faraday Discussions, 2014, 172, 365-395.	3.2	1
48	The many faces of carbon in electrochemistry: general discussion. Faraday Discussions, 2014, 172, 117-137.	3.2	4
49	Carbon electrode interfaces for synthesis, sensing and electrocatalysis: general discussion. Faraday Discussions, 2014, 172, 497-520.	3.2	1
50	Carbon electrodes for energy storage: general discussion. Faraday Discussions, 2014, 172, 239-260.	3.2	11
51	Electron transport in all-carbon molecular electronic devices. Faraday Discussions, 2014, 172, 9-25.	3.2	26
52	Bilayer Molecular Electronics: All-Carbon Electronic Junctions Containing Molecular Bilayers Made with "Click―Chemistry. Journal of the American Chemical Society, 2013, 135, 12972-12975.	13.7	63
53	Direct Observation of Large Quantum Interference Effect in Anthraquinone Solid-State Junctions. Journal of the American Chemical Society, 2013, 135, 10218-10221.	13.7	72
54	Direct spectroscopic monitoring of conductance switching in polythiophene memory devices. Electrochimica Acta, 2013, 110, 437-445.	5.2	12

#	Article	IF	CITATIONS
55	A critical perspective on molecular electronic junctions: there is plenty of room in the middle. Physical Chemistry Chemical Physics, 2013, 15, 1065-1081.	2.8	136
56	Direct Optical Determination of Interfacial Transport Barriers in Molecular Tunnel Junctions. Journal of the American Chemical Society, 2013, 135, 9584-9587.	13.7	44
57	Redox-Gated Three-Terminal Organic Memory Devices: Effect of Composition and Environment on Performance. ACS Applied Materials & amp; Interfaces, 2013, 5, 11052-11058.	8.0	41
58	Activationless charge transport across 4.5 to 22 nm in molecular electronic junctions. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 5326-5330.	7.1	149
59	Charge transport in molecular electronic junctions: Compression of the molecular tunnel barrier in the strong coupling regime. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 11498-11503.	7.1	142
60	Comment on Electrochemical Kinetics at Ordered Graphite Electrodes. Analytical Chemistry, 2012, 84, 2602-2605.	6.5	129
61	Solid State Spectroelectrochemistry of Redox Reactions in Polypyrrole/Oxide Molecular Heterojunctions. Analytical Chemistry, 2012, 84, 2459-2465.	6.5	24
62	Surface Functionalization in the Nanoscale Domain. , 2012, , 163-190.		9
63	Spatially Resolved Raman Spectroelectrochemistry of Solid-State Polythiophene/Viologen Memory Devices. Journal of the American Chemical Society, 2012, 134, 14869-14876.	13.7	118
64	The merger of electrochemistry and molecular electronics. Chemical Record, 2012, 12, 149-163.	5.8	30
65	Assembling Molecular Electronic Junctions One Molecule at a Time. Nano Letters, 2011, 11, 4725-4729.	9.1	30
66	All-Carbon Molecular Tunnel Junctions. Journal of the American Chemical Society, 2011, 133, 19168-19177.	13.7	101
67	Analytical Chemistry in Molecular Electronics. Annual Review of Analytical Chemistry, 2011, 4, 173-195.	5.4	31
68	Thermal oxidation as a simple method to increase resolution in nanoimprint lithography. Microelectronic Engineering, 2011, 88, 3256-3260.	2.4	3
69	Redox driven conductance changes for resistive memory. Applied Physics A: Materials Science and Processing, 2011, 102, 841-850.	2.3	38
70	Towards Integrated Molecular Electronic Devices: Characterization of Molecular Layer Integrity During Fabrication Processes. Advanced Functional Materials, 2011, 21, 2273-2281.	14.9	32
71	Electron-beam evaporated silicon as a top contact for molecular electronic device fabrication. Physical Chemistry Chemical Physics, 2011, 13, 14318.	2.8	20
72	â€~Soft' Au, Pt and Cu contacts for molecular junctions through surface-diffusion-mediated deposition. Nature Nanotechnology, 2010, 5, 612-617.	31.5	128

#	Article	IF	CITATIONS
73	Electronic Characteristics and Charge Transport Mechanisms for Large Area Aromatic Molecular Junctions. Journal of Physical Chemistry C, 2010, 114, 15806-15815.	3.1	83
74	Microfabrication and Integration of Diazonium-Based Aromatic Molecular Junctions. ACS Applied Materials & amp; Interfaces, 2010, 2, 3693-3701.	8.0	48
75	Solid-State Electrochemistry in Molecule/TiO[sub 2] Molecular Heterojunctions as the Basis of the TiO[sub 2] "Memristor― Journal of the Electrochemical Society, 2009, 156, P29.	2.9	79
76	Progress with Molecular Electronic Junctions: Meeting Experimental Challenges in Design and Fabrication. Advanced Materials, 2009, 21, 4303-4322.	21.0	344
77	Electron Transport and Redox Reactions in Molecular Electronic Junctions. ChemPhysChem, 2009, 10, 2387-2391.	2.1	19
78	Anomalous Tunneling in Carbon/Alkane/TiO ₂ /Gold Molecular Electronic Junctions: Energy Level Alignment at the Metal/Semiconductor Interface. ACS Applied Materials & Interfaces, 2009, 1, 443-451.	8.0	18
79	Derivatization of Optically Transparent Materials with Diazonium Reagents for Spectroscopy of Buried Interfaces. Analytical Chemistry, 2009, 81, 6972-6980.	6.5	36
80	Optical Interference Effects in the Design of Substrates for Surface-Enhanced Raman Spectroscopy. Applied Spectroscopy, 2009, 63, 133-140.	2.2	61
81	Advanced Carbon Electrode Materials for Molecular Electrochemistry. Chemical Reviews, 2008, 108, 2646-2687.	47.7	2,327
82	In-Situ Optical Absorbance Spectroscopy of Molecular Layers in Carbon Based Molecular Electronic Devices. Chemistry of Materials, 2008, 20, 3849-3856.	6.7	22
83	Conducting Polymer Memory Devices Based on Dynamic Doping. Journal of the American Chemical Society, 2008, 130, 11073-11081.	13.7	85
84	Molecular electronics using diazonium-derived adlayers on carbon with Cu top contacts: critical analysis of metal oxides and filaments. Journal of Physics Condensed Matter, 2008, 20, 374117.	1.8	31
85	Electronic characteristics of fluorene/TiO2 molecular heterojunctions. Journal of Chemical Physics, 2007, 126, 024704.	3.0	42
86	Normal and Surface-Enhanced Raman Spectroscopy of Nitroazobenzene Submonolayers and Multilayers on Carbon and Silver Surfaces. Applied Spectroscopy, 2007, 61, 613-620.	2.2	17
87	Ultraviolet—Visible Spectroelectrochemistry of Chemisorbed Molecular Layers on Optically Transparent Carbon Electrodes. Applied Spectroscopy, 2007, 61, 1246-1253.	2.2	33
88	In situ Raman spectroelectrochemistry of azobenzene monolayers on glassy carbon. Analytical and Bioanalytical Chemistry, 2007, 388, 131-134.	3.7	15
89	Determination of the Structure and Orientation of Organic Molecules Tethered to Flat Graphitic Carbon by ATR-FT-IR and Raman Spectroscopy. Analytical Chemistry, 2006, 78, 3104-3112.	6.5	95
90	Carbon/molecule/metal molecular electronic junctions: the importance of "contacts― Faraday Discussions, 2006, 131, 33-43.	3.2	42

6

#	Article	IF	CITATIONS
91	Analytical Challenges in Molecular Electronics. Analytical Chemistry, 2006, 78, 3490-3497.	6.5	43
92	Electron transport and redox reactions in carbon-based molecular electronic junctions. Physical Chemistry Chemical Physics, 2006, 8, 2572.	2.8	74
93	Redox-Driven Conductance Switching via Filament Formation and Dissolution in Carbon/Molecule/TiO2/Ag Molecular Electronic Junctions. Langmuir, 2006, 22, 10689-10696.	3.5	51
94	Covalent Bonding of Alkene and Alkyne Reagents to Graphitic Carbon Surfaces. Langmuir, 2005, 21, 11105-11112.	3.5	34
95	Importance of Oxides in Carbon/Molecule/Metal Molecular Junctions with Titanium and Copper Top Contacts. Journal of the Electrochemical Society, 2005, 152, E176.	2.9	34
96	Strong Effects of Molecular Structure on Electron Transport in Carbon/Molecule/Copper Electronic Junctions. Journal of Physical Chemistry B, 2005, 109, 11163-11172.	2.6	60
97	Carbon/Molecule/Metal and Carbon/Molecule/Metal Oxide Molecular Electronic Junctions. Chemistry of Materials, 2005, 17, 4939-4948.	6.7	41
98	Ultraflat Carbon Film Electrodes Prepared by Electron Beam Evaporation. Analytical Chemistry, 2004, 76, 2544-2552.	6.5	54
99	In Situ Raman Spectroscopy of Bias-Induced Structural Changes in Nitroazobenzene Molecular Electronic Junctions. Journal of the American Chemical Society, 2004, 126, 16621-16631.	13.7	98
100	Characterization of Carbon/Nitroazobenzene/Titanium Molecular Electronic Junctions with Photoelectron and Raman Spectroscopy. Analytical Chemistry, 2004, 76, 1089-1097.	6.5	92
101	Covalent Bonding of Organic Molecules to Cu and Al Alloy 2024 T3 Surfaces via Diazonium Ion Reduction. Journal of the Electrochemical Society, 2004, 151, B252.	2.9	227
102	Raman microscopy of chromate interactions with corroding aluminum alloy 2024-T3. Corrosion Science, 2004, 46, 1729-1739.	6.6	20
103	Molecular Electronic Junctions. Chemistry of Materials, 2004, 16, 4477-4496.	6.7	523
104	Molecular Electronics. Electrochemical Society Interface, 2004, 13, 25-30.	0.4	1
105	Carbon-Based Molecular Electronic Junctions. Electrochemical Society Interface, 2004, 13, 46-51.	0.4	26
106	Influence of oxygen on luminescence and vibrational spectra of Mg-doped GaN. Physica Status Solidi (B): Basic Research, 2003, 240, 356-359.	1.5	5
107	Mono- and Multilayer Formation by Diazonium Reduction on Carbon Surfaces Monitored with Atomic Force Microscopy "Scratching― Analytical Chemistry, 2003, 75, 3837-3844.	6.5	337
108	Performance of Pyrolyzed Photoresist Carbon Films in a Microchip Capillary Electrophoresis Device with Sinusoidal Voltammetric Detection. Analytical Chemistry, 2003, 75, 4265-4271.	6.5	91

#	Article	IF	CITATIONS
109	Molecular Rectification and Conductance Switching in Carbon-Based Molecular Junctions by Structural Rearrangement Accompanying Electron Injection. Journal of the American Chemical Society, 2003, 125, 10748-10758.	13.7	157
110	Modified Carbon Surfaces as "Organic Electrodes―That Exhibit Conductance Switching. Analytical Chemistry, 2003, 75, 296-305.	6.5	126
111	Raman Spectroscopy of Monolayers Formed from Chromate Corrosion Inhibitor on Copper Surfaces. Journal of the Electrochemical Society, 2003, 150, B367.	2.9	57
112	Storage and Release of Soluble Hexavalent Chromium from Chromate Conversion Coatings on Al Alloys: Kinetics of Release. Journal of the Electrochemical Society, 2003, 150, B83.	2.9	46
113	Inhibition of Corrosion-Related Reduction Processes via Chromium Monolayer Formation. Journal of the Electrochemical Society, 2002, 149, B379.	2.9	62
114	Electronic Conductance Behavior of Carbon-Based Molecular Junctions with Conjugated Structures. Journal of Physical Chemistry B, 2002, 106, 10355-10362.	2.6	99
115	A Galvanic Corrosion Approach to Investigating Chromate Effects on Aluminum Alloy 2024-T3. Journal of the Electrochemical Society, 2002, 149, B179.	2.9	105
116	In Situ Raman Spectroelectrochemistry of Electron Transfer between Glassy Carbon and a Chemisorbed Nitroazobenzene Monolayer. Journal of the American Chemical Society, 2002, 124, 10894-10902.	13.7	101
117	A Mechanism for Conductance Switching in Carbon-Based Molecular Electronic Junctions. Electrochemical and Solid-State Letters, 2002, 5, E43.	2.2	95
118	Performance Comparisons of Conventional and Line-Focused Surface Raman Spectrometers. Applied Spectroscopy, 2001, 55, 767-773.	2.2	31
119	Raman spectroscopic analysis of the speciation of dilute chromate solutions. Corrosion Science, 2001, 43, 1557-1572.	6.6	91
120	Covalently Bonded Organic Monolayers on a Carbon Substrate:Â A New Paradigm for Molecular Electronics. Nano Letters, 2001, 1, 491-494.	9.1	123
121	Electroanalytical Performance of Carbon Films with Near-Atomic Flatness. Analytical Chemistry, 2001, 73, 893-900.	6.5	230
122	Effects of chromate and chromate conversion coatings on corrosion of aluminum alloy 2024-T3. Surface and Coatings Technology, 2001, 140, 51-57.	4.8	222
123	Photoresist-Derived Carbon for Microelectromechanical Systems and Electrochemical Applications. Journal of the Electrochemical Society, 2000, 147, 277.	2.9	297
124	Formation of Chromate Conversion Coatings on Al-Cu-Mg Intermetallic Compounds and Alloys. Journal of the Electrochemical Society, 2000, 147, 4494.	2.9	70
125	Self-catalysis by Catechols and Quinones during Heterogeneous Electron Transfer at Carbon Electrodes. Journal of the American Chemical Society, 2000, 122, 6759-6764.	13.7	214
126	Elucidation of the Mechanism of Dioxygen Reduction on Metal-Free Carbon Electrodes. Journal of the Electrochemical Society, 2000, 147, 3420.	2.9	197

#	Article	lF	CITATIONS
127	Storage and Release of Soluble Hexavalent Chromium from Chromate Conversion Coatings Equilibrium Aspects of Cr[sup VI] Concentration. Journal of the Electrochemical Society, 2000, 147, 2556.	2.9	177
128	In Situ Raman Microscopy of Chromate Effects on Corrosion Pits in Aluminum Alloy. Journal of the Electrochemical Society, 1999, 146, 4076-4081.	2.9	93
129	Characterization of the surface carbonyl and hydroxyl coverage on glassy carbon electrodes using Raman spectroscopy. Journal of Electroanalytical Chemistry, 1999, 469, 150-158.	3.8	45
130	Facile Preparation of Active Glassy Carbon Electrodes with Activated Carbon and Organic Solvents. Analytical Chemistry, 1999, 71, 3574-3580.	6.5	168
131	Surface Chemistry and Electron-Transfer Kinetics of Hydrogen-Modified Glassy Carbon Electrodes. Analytical Chemistry, 1999, 71, 1553-1560.	6.5	99
132	Electrochemical Modification of Boron-Doped Chemical Vapor Deposited Diamond Surfaces with Covalently Bonded Monolayers. Electrochemical and Solid-State Letters, 1999, 2, 288.	2.2	136
133	Control of Catechol and Hydroquinone Electron-Transfer Kinetics on Native and Modified Glassy Carbon Electrodes. Analytical Chemistry, 1999, 71, 4594-4602.	6.5	231
134	Effects of Surface Monolayers on the Electron-Transfer Kinetics and Adsorption of Methyl Viologen and Phenothiazine Derivatives on Glassy Carbon Electrodes. Analytical Chemistry, 1999, 71, 4081-4087.	6.5	92
135	Structure and Function of Ferricyanide in the Formation of Chromate Conversion Coatings on Aluminum Aircraft Alloy. Journal of the Electrochemical Society, 1999, 146, 3696-3701.	2.9	90
136	Noninvasive Identification of Materials inside USP Vials with Raman Spectroscopy and a Raman Spectral Library. Journal of Pharmaceutical Sciences, 1998, 87, 1-8.	3.3	44
137	Calibration of Raman Spectrometer Instrument Response Function with Luminescence Standards: An Update. Applied Spectroscopy, 1998, 52, 1614-1618.	2.2	50
138	Corrosion Protection of Untreated AAâ€2024â€T3 in Chloride Solution by a Chromate Conversion Coating Monitored with Raman Spectroscopy. Journal of the Electrochemical Society, 1998, 145, 2258-2264.	2.9	239
139	Chemistry of a Chromate Conversion Coating on Aluminum Alloy AA2024â€₹3 Probed by Vibrational Spectroscopy. Journal of the Electrochemical Society, 1998, 145, 3083-3089.	2.9	166
140	Raman Spectroscopic Determination of the Structure and Orientation of Organic Monolayers Chemisorbed on Carbon Electrode Surfaces. Analytical Chemistry, 1997, 69, 2091-2097.	6.5	105
141	Spatially Resolved Raman Spectroscopy of Carbon Electrode Surfaces:Â Observations of Structural and Chemical Heterogeneity. Analytical Chemistry, 1997, 69, 4680-4687.	6.5	138
142	Simplified Calibration of Instrument Response Function for Raman Spectrometers Based on Luminescent Intensity Standards. Applied Spectroscopy, 1997, 51, 108-116.	2.2	68
143	Multichannel FT-Raman Spectroscopy: Noise Analysis and Performance Assessment. Applied Spectroscopy, 1997, 51, 1687-1697.	2.2	21
144	Control of Electron Transfer Kinetics at Glassy Carbon Electrodes by Specific Surface Modification. Analytical Chemistry, 1996, 68, 3958-3965.	6.5	678

#	Article	IF	CITATIONS
145	Multichannel Fourier Transform Raman Spectroscopy: Combining the Advantages of CCDs with Interferometry. Applied Spectroscopy, 1996, 50, 1209-1214.	2.2	23
146	Isotope and surface preparation effects on alkaline dioxygen reduction at carbon electrodes. Journal of Electroanalytical Chemistry, 1996, 410, 235-242.	3.8	156
147	Carbon Electrode Surface Chemistry: Optimization of Bioanalytical Performance. , 1995, , 1-26.		12
148	<title>Raman spectroscopy of human biopsy specimens</title> ., 1995, , .		1
149	Quantitative Surface Raman Spectroscopy of Physisorbed Monolayers on Glassy Carbon. Langmuir, 1995, 11, 4041-4047.	3.5	44
150	Electron Transfer Kinetics at Modified Carbon Electrode Surfaces: The Role of Specific Surface Sites. Analytical Chemistry, 1995, 67, 3115-3122.	6.5	325
151	Resonance Raman Observation of Surface Carbonyl Groups on Carbon Electrodes Following Dinitrophenylhydrazine Derivatization. Analytical Chemistry, 1995, 67, 967-975.	6.5	46
152	Reactions of Organic Monolayers on Carbon Surfaces Observed with Unenhanced Raman Spectroscopy. Journal of the American Chemical Society, 1995, 117, 11254-11259.	13.7	323
153	Polarized Raman Spectroscopy of Metallophthalocyanine Monolayers on Carbon Surfaces. Langmuir, 1995, 11, 4036-4040.	3.5	25
154	Raman Spectroscopy of Normal and Diseased Human Breast Tissues. Analytical Chemistry, 1995, 67, 777-783.	6.5	374
155	Control of reactivity at carbon electrode surfaces. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 1994, 93, 211-219.	4.7	86
156	Laser activation of carbon microdisk electrodes: Surface oxide effects on Ru(NH3)62+3+ kinetics. Journal of Electroanalytical Chemistry, 1994, 369, 175-181.	3.8	22
157	Scanning Tunneling Microscopy of Ordered Graphite and Glassy Carbon Surfaces: Electronic Control of Quinone Adsorption. Langmuir, 1994, 10, 4307-4314.	3.5	131
158	Anomalously Slow Electron Transfer at Ordered Graphite Electrodes: Influence of Electronic Factors and Reactive Sites. The Journal of Physical Chemistry, 1994, 98, 5314-5319.	2.9	246
159	Characterization of human breast biopsy specimens with near-IR Raman spectroscopy. Analytical Chemistry, 1994, 66, 319-326.	6.5	169
160	Reduction of Fluorescence Interference in Raman Spectroscopy via Analyte Adsorption on Graphitic Carbon. Analytical Chemistry, 1994, 66, 4159-4165.	6.5	108
161	<title>Raman spectrosopic characterization of human malignant tissues: implications for a percutaneous optical biopsy technique for in-situ tissue diagnosis</title> . , 1994, 2081, 185.		0
162	Detection of Silicone in Lymph Node Biopsy Specimens by Near-Infrared Raman Spectroscopy. Applied Spectroscopy, 1993, 47, 387-390.	2.2	23

#	Article	IF	CITATIONS
163	Intensity Calibration and Sensitivity Comparisons for CCD/Raman Spectrometers. Applied Spectroscopy, 1993, 47, 1965-1974.	2.2	67
164	Scanning tunneling microscopy of carbon surfaces: relationships between electrode kinetics, capacitance, and morphology for glassy carbon electrodes. Analytical Chemistry, 1993, 65, 937-944.	6.5	100
165	Synthesis, characterization, and electrochemical activity of halogen-doped glassy carbon. Chemistry of Materials, 1993, 5, 1110-1117.	6.7	16
166	Preparation of nanoscale platinum(0) clusters in glassy carbon and their catalytic activity. Chemistry of Materials, 1993, 5, 1727-1738.	6.7	33
167	Laserâ€Induced Transient Currents on Glassy Carbon Electrodes: Double Layer and Ion Adsorption Effects. Journal of the Electrochemical Society, 1993, 140, 1360-1365.	2.9	23
168	Electron Transfer Kinetics of Aquated Fe + 3 /  + 2, Eu + 3 /  +â Catalysis by Surface Oxides. Journal of the Electrochemical Society, 1993, 140, 2593-2599.	€‰2, and 2.9	V 135
169	<title>Remote high-sensitivity Raman spectroscopy with fiber optics, diode lasers, and CCD spectrometers</title> . , 1992, , .		1
170	Adsorption of catechols on fractured glassy carbon electrode surfaces. Analytical Chemistry, 1992, 64, 444-448.	6.5	90
171	Nanoscale platinum(0) clusters in glassy carbon: synthesis, characterization, and uncommon catalytic activity. Journal of the American Chemical Society, 1992, 114, 769-771.	13.7	73
172	In situ Raman monitoring of electrochemical graphite intercalation and lattice damage in mild aqueous acids. Analytical Chemistry, 1992, 64, 1528-1533.	6.5	105
173	Effects of redox system structure on electron-transfer kinetics at ordered graphite and glassy carbon electrodes. Analytical Chemistry, 1992, 64, 2518-2524.	6.5	244
174	Feature articls. Doped glassy carbon: a new material for electrocatalysis. Journal of Materials Chemistry, 1992, 2, 771.	6.7	72
175	Anthraquinonedisulfonate adsorption, electron-transfer kinetics, and capacitance on ordered graphite electrodes: the important role of surface defects. The Journal of Physical Chemistry, 1992, 96, 3124-3130.	2.9	164
176	Fiber-Optic Sampling Combined with an Imaging Spectrograph for Routine Raman Spectroscopy. Applied Spectroscopy, 1992, 46, 262-265.	2.2	39
177	Microstructural and morphological changes induced in glassy carbon electrodes by laser irradiation. Journal of Electroanalytical Chemistry, 1992, 324, 229-242.	3.8	48
178	Electron transfer kinetics of Fe(CN)63â^'4â^' on laser-activated and CNâ^'-modified Pt electrodes. Journal of Electroanalytical Chemistry, 1992, 326, 1-12.	3.8	64
179	Morphology and Electrochemical Effects of Defects on Highly Oriented Pyrolytic Graphite. Journal of the Electrochemical Society, 1991, 138, 2412-2418.	2.9	73
180	Surface-enhanced Raman spectroscopy of carbon electrode surfaces following silver electrodeposition. Analytical Chemistry, 1991, 63, 1289-1295.	6.5	44

#	Article	IF	CITATIONS
181	Surface enhanced Raman examination of carbon electrodes: effects of laser activation and electrochemical pretreatment. Langmuir, 1991, 7, 2370-2375.	3.5	33
182	Effects of wavelength, pulse duration and power density on laser activation of glassy carbon electrodes. Journal of Electroanalytical Chemistry and Interfacial Electrochemistry, 1991, 310, 127-138.	0.1	15
183	Scanning tunneling microscopy of laser-activated carbon electrodes used in studies of electrochemical charge-transfer reactions. Journal of Vacuum Science & Technology an Official Journal of the American Vacuum Society B, Microelectronics Processing and Phenomena, 1991, 9, 960.	1.6	3
184	Spatially resolved spectroelectrochemical examination of the oxidation of dopamine by chlorpromazine cation radical. The Journal of Physical Chemistry, 1990, 94, 3620-3624.	2.9	16
185	Laser microfabrication and activation of graphite and glassy carbon electrodes. Analytical Chemistry, 1990, 62, 1339-1344.	6.5	41
186	Doped glassy carbon materials (DGC): Their synthesis from polymeric precursors and investigation of their properties. British Polymer Journal, 1990, 23, 171-177.	0.7	8
187	Spatially resolved absorption examination of the redox catalysis mechanism: equilibrium and near equilibrium cases. Journal of Electroanalytical Chemistry and Interfacial Electrochemistry, 1990, 285, 1-9.	0.1	7
188	Doped glassy carbon materials (DGC): low-temperature synthesis, structure, and catalytic behavior. Journal of the American Chemical Society, 1990, 112, 4954-4956.	13.7	59
189	Quantitative correlations of heterogeneous electron-transfer kinetics with surface properties of glassy carbon electrodes. Journal of the American Chemical Society, 1990, 112, 4617-4622.	13.7	163
190	Near-Infrared Raman Spectroscopy of Liquids and Solids with a Fiber-Optic Sampler, Diode Laser, and CCD Detector. Applied Spectroscopy, 1990, 44, 1229-1231.	2.2	58
191	Hadamard Transform Raman Microscopy of Laser-Modified Graphite Electrodes. Applied Spectroscopy, 1990, 44, 1270-1275.	2.2	52
192	Raman spectroscopy of carbon materials: structural basis of observed spectra. Chemistry of Materials, 1990, 2, 557-563.	6.7	1,450
193	Spatially Resolved Absorption Spectroelectrochemistry: Spectra and Concentration Profiles of Species Generated and Consumed at Single and Twin Electrodes. Journal of the Electrochemical Society, 1989, 136, 1375-1379.	2.9	17
194	Fast heterogeneous electron transfer rates for glassy carbon electrodes without polishing or activation procedures. Journal of Electroanalytical Chemistry and Interfacial Electrochemistry, 1989, 263, 163-169.	0.1	43
195	Activation of highly ordered pyrolytic graphite for heterogeneous electron transfer: relationship between electrochemical performance and carbon microstructure. Journal of the American Chemical Society, 1989, 111, 1217-1223.	13.7	289
196	Mechanism of electrochemical activation of carbon electrodes: role of graphite lattice defects. Langmuir, 1989, 5, 683-688.	3.5	149
197	Observation of concentration profiles at cylindrical microelectrodes by a combination of spatially resolved absorption spectroscopy and the Abel inversion. Analytical Chemistry, 1989, 61, 2347-2352.	6.5	24
198	In situ laser activation of glassy carbon electrochemical detectors for liquid chromatography: demonstration of improved reversibility and detection limits. Analytical Chemistry, 1989, 61, 1989-1993.	6.5	15

#	Article	IF	CITATIONS
199	Evaluation of a diode laser/charge coupled device spectrometer for near-infrared Raman spectroscopy. Analytical Chemistry, 1989, 61, 2647-2651.	6.5	89
200	Quantitative relationship between electron transfer rate and surface microstructure of laser-modified graphite electrodes. Analytical Chemistry, 1989, 61, 1637-1641.	6.5	211
201	Observation of kinetic heterogeneity on highly ordered pyrolytic graphite using electrogenerated chemiluminescence. Analytical Chemistry, 1989, 61, 2763-2766.	6.5	56
202	Near-Infrared Raman Spectroscopy with a 783-nm Diode Laser and CCD Array Detector. Applied Spectroscopy, 1989, 43, 372-375.	2.2	88
203	Spatially resolved spectroelectrochemistry for examining an electrochemically initiated homogeneous electron transfer reaction. Journal of Electroanalytical Chemistry and Interfacial Electrochemistry, 1988, 257, 57-70.	0.1	13
204	Diagnosis of adsorption on solid electrodes with semiintegral voltammetry. Analytical Chemistry, 1988, 60, 605-608.	6.5	52
205	Laser activation of carbon electrodes. Relationship between laser-induced surface effects and electron transfer activation. Analytical Chemistry, 1988, 60, 1725-1730.	6.5	94
206	Raman monitoring of reactive electrogenerated species: kinetics of halide addition to o-quinones. The Journal of Physical Chemistry, 1988, 92, 6345-6351.	2.9	8
207	Synthetic aci-reductones. 3,4-Dihydroxy-2H-1-benzopyran-2-ones and their cis- and trans-4a,5,6,7,8,8a-hexahydro diastereomers. Antiaggregatory, antilipidemic, and redox properties compared to the 4-substituted 2-hydroxytetronic acids. Journal of Medicinal Chemistry, 1988, 31, 1437-1445.	6.4	16
208	Remote, Long-Pathlength Cell for High-Sensitivity Raman Spectroscopy. Applied Spectroscopy, 1987, 41, 126-130.	2.2	78
209	High-sensitivity normal and resonance Raman spectroscopy: applications to transient electrochemistry. Analytical Chemistry, 1987, 59, 2631-2637.	6.5	16
210	Hydrodynamically modulated alternating current voltammetry. Analytical Chemistry, 1987, 59, 2692-2699.	6.5	14
211	Spectroelectrochemical determination of trace concentrations by diffusion layer imaging. Journal of Electroanalytical Chemistry and Interfacial Electrochemistry, 1987, 220, 41-54.	0.1	12
212	Repetitive in situ renewal and activation of carbon and platinum electrodes: application to pulse voltammetry. Analytical Chemistry, 1987, 59, 1615-1620.	6.5	64
213	High-resolution spatially resolved visible absorption spectrometry of the electrochemical diffusion layer. Analytical Chemistry, 1986, 58, 2771-2777.	6.5	40
214	Efficient hydrodynamic modulation voltammetry with a microcylinder electrode. Analytical Chemistry, 1986, 58, 1778-1782.	6.5	34
215	In situ laser activation of glassy carbon electrodes. Analytical Chemistry, 1986, 58, 2745-2750.	6.5	218
216	Normal and resonance Raman spectroelectrochemistry with fiber optic light collection. Analytical Chemistry, 1986, 58, 2486-2492.	6.5	52

#	Article	IF	CITATIONS
217	Square wave voltammetry on platinum microdisk electrodes using synchronous demodulation. Journal of Electroanalytical Chemistry and Interfacial Electrochemistry, 1985, 191, 329-342.	0.1	18
218	Submicrosecond spectroelectrochemistry applied to chlorpromazine cation radical charge transfer reactions. Journal of Electroanalytical Chemistry and Interfacial Electrochemistry, 1985, 182, 61-72.	0.1	49
219	Diffusion layer imaging: spatial resolution of electrochemical concentration profiles. Analytical Chemistry, 1985, 57, 1763-1765.	6.5	32
220	Effect of surface chemistry on the morphology, resistance, and colloidal behavior of small silver particles. Journal of Applied Physics, 1985, 58, 355-360.	2.5	8
221	High-sensitivity spectroelectrochemistry based on electrochemical modulation of an absorbing analyte. Analytical Chemistry, 1985, 57, 752-758.	6.5	27
222	In situ cleaning and activation of solid electrode surfaces by pulsed laser light. Analytical Chemistry, 1984, 56, 2256-2257.	6.5	69
223	Versatile, efficient Raman sampling with fiber optics. Analytical Chemistry, 1984, 56, 2199-2204.	6.5	157
224	Spectroelectrochemical examination of chlorpromazine cation radical reactions with mono- and bifunctional nucleophiles. Journal of Electroanalytical Chemistry and Interfacial Electrochemistry, 1983, 145, 117-126.	0.1	14
225	Fiber optic probe for remote Raman spectrometry. Analytical Chemistry, 1983, 55, 146-148.	6.5	110
226	Spectroelectrochemical examination of charge transfer between chlorpromazine cation radical and catecholamines. Analytical Chemistry, 1983, 55, 308-312.	6.5	23
227	Microsecond spectroelectrochemistry by external reflection from cylindrical microelectrodes. Analytical Chemistry, 1982, 54, 2356-2361.	6.5	52
228	Optical Diffraction by Electrodes: Use of Fourier Transforms in Spectroelectrochemistry. , 1982, , 527-547.		0
229	Absorption spectroelectrochemistry with microelectrodes. Analytical Chemistry, 1981, 53, 997-1001.	6.5	38
230	Spectroelectrochemical observation of diffusion profiles by the parallel absorption method. Analytical Chemistry, 1981, 53, 202-206.	6.5	28
231	Side-chain effects on phenothiazine cation radical reactions. Journal of Medicinal Chemistry, 1981, 24, 1342-1347.	6.4	52
232	Diffractive spectroelectrochemistry. Use of diffracted light for monitoring electrogenerated chromophores. Journal of the American Chemical Society, 1981, 103, 2524-2529.	13.7	25
233	Anodic oxidation of 1,4-dimethoxy aromatic compounds. A facile route to functionalized quinone bisketals. Journal of Organic Chemistry, 1980, 45, 369-378.	3.2	48
234	Glancing incidence external reflection spectroelectrochemistry with a continuum source. Analytical Chemistry, 1980, 52, 1885-1889.	6.5	28

#	Article	IF	CITATIONS
235	Electrochemical oxidation of hydroxylated phenothiazine and imipramine derivatives. Journal of Medicinal Chemistry, 1979, 22, 196-199.	6.4	12
236	Optical monitoring of electrogenerated species via specular reflection at glancing incidence. Analytical Chemistry, 1979, 51, 749-752.	6.5	33
237	Observation of electrochemical concentration profiles by absorption spectroelectrochemistry. Analytical Chemistry, 1979, 51, 2253-2257.	6.5	51
238	Effect of structure on phenothiazine cation radical reactions in aqueous buffers. Journal of Medicinal Chemistry, 1979, 22, 1447-1453.	6.4	46
239	Kinetics of chlorpromazine cation radical decomposition in aqueous buffers. Journal of the American Chemical Society, 1978, 100, 962-967.	13.7	86
240	Simultaneous determination of reversible potential and rate constant for a first-order EC reaction by potential dependent chronoamperometry. Analytical Chemistry, 1978, 50, 645-648.	6.5	19
241	Chemical and electrochemical oxidation of 7-hydroxychlorpromazine. Journal of Medicinal Chemistry, 1978, 21, 362-368.	6.4	20
242	Reactions of chlorpromazine cation radical with physiologically occurring nucleophiles. Journal of Medicinal Chemistry, 1978, 21, 948-952.	6.4	45
243	Characteristics and reactions of cation radicals and quinone imines derived from hydroxylated chlorpromazine derivatives. Journal of Organic Chemistry, 1978, 43, 5006-5013.	3.2	13
244	Bioelectrochemistry: An Examination of Some Examples. CRC Critical Reviews in Analytical Chemistry, 1978, 7, 89-119.	1.8	3
245	Thin-layer electrochemical technique for monitoring electrogenerated reactive intermediates. Analytical Chemistry, 1977, 49, 206-209.	6.5	16
246	Oxidative Reactions of Hydroxylated Chlorpromazine Metabolites. Journal of Pharmaceutical Sciences, 1977, 66, 357-361.	3.3	18
247	Potential dependent chronoamperometry: experimental verification. Journal of Electroanalytical Chemistry and Interfacial Electrochemistry, 1977, 85, 361-369.	0.1	9
248	Intracyclization rates of 6-hydroxydopamine and 6-aminodopamine analogs under physiological conditions. Journal of Medicinal Chemistry, 1976, 19, 178-180.	6.4	33
249	Potential oxidative pathways of brain catecholamines. Journal of Medicinal Chemistry, 1976, 19, 37-40.	6.4	410
250	A kinetic analysis of a catechol-specific binding site in the microsomal fraction from the rabbit aorta. European Journal of Pharmacology, 1976, 38, 221-232.	3.5	11
251	Voltammetry in brain tissue: The fate of injected 6-hydroxydopamine. Brain Research, 1974, 73, 15-21.	2.2	54
252	Voltammetry in brain tissue: Quantitative studies of drug interactions. Brain Research, 1974, 73, 23-33.	2.2	67

#	Article	IF	CITATIONS
253	Electrochemical studies of the interactions of riboflavine and of its reduction products with metal ions in dimethyl sulfoxide. Inorganic Chemistry, 1972, 11, 779-782.	4.0	23
254	Ted Kuwana as a Senior Colleague, Mentor and Scientific Leader. Electroanalysis, 0, , .	2.9	0