
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3026238/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Studying Protein–Protein Interactions at Plasmodesmata by Measuring Förster Resonance Energy Transfer. Methods in Molecular Biology, 2022, 2457, 219-232.	0.9	0
2	Sensors for the quantification, localization and analysis of the dynamics of plant hormones. Plant Journal, 2021, 105, 542-557.	5.7	47
3	Receptor-like cytoplasmic kinase MAZZA mediates developmental processes with CLAVATA1 family receptors in Arabidopsis. Journal of Experimental Botany, 2021, 72, 4853-4870.	4.8	18
4	An RNA in situ hybridization protocol optimized for monocot tissue. STAR Protocols, 2021, 2, 100398.	1.2	6
5	The Cell Fate Controlling CLE40 Peptide Requires CNGCs to Trigger Highly Localized Ca2+ Transients in <i>Arabidopsis thaliana</i> Root Meristems. Plant and Cell Physiology, 2021, 62, 1290-1301.	3.1	7
6	The boundary-expressed <i>EPIDERMAL PATTERNING FACTOR-LIKE2</i> gene encoding a signaling peptide promotes cotyledon growth during <i>Arabidopsis thaliana</i> embryogenesis. Plant Biotechnology, 2021, 38, 317-322.	1.0	5
7	Seeing is Believing: Advances in Plant Imaging Technologies. Plant and Cell Physiology, 2021, 62, 1217-1220.	3.1	3
8	Control of Arabidopsis shoot stem cell homeostasis by two antagonistic CLE peptide signalling pathways. ELife, 2021, 10, .	6.0	48
9	CLE40 Signaling Regulates Root Stem Cell Fate. Plant Physiology, 2020, 182, 1776-1792.	4.8	67
10	A Peptide Pair Coordinates Regular Ovule Initiation Patterns with Seed Number and Fruit Size. Current Biology, 2020, 30, 4352-4361.e4.	3.9	41
11	An Acyl-CoA <i>N</i> -Acyltransferase Regulates Meristem Phase Change and Plant Architecture in Barley. Plant Physiology, 2020, 183, 1088-1109.	4.8	26
12	The CEP5 Peptide Promotes Abiotic Stress Tolerance, As Revealed by Quantitative Proteomics, and Attenuates the AUX/IAA Equilibrium in Arabidopsis. Molecular and Cellular Proteomics, 2020, 19, 1248-1262.	3.8	35
13	Protein complex stoichiometry and expression dynamics of transcription factors modulate stem cell division. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 15332-15342.	7.1	34
14	Optogenetic control of gene expression in plants in the presence of ambient white light. Nature Methods, 2020, 17, 717-725.	19.0	72
15	Emerging mechanisms to fine-tune receptor kinase signaling specificity. Current Opinion in Plant Biology, 2020, 57, 41-51.	7.1	9
16	A Cellular Insulator against CLE45 Peptide Signaling. Current Biology, 2019, 29, 2501-2508.e3.	3.9	49
17	Molecular Analysis of Protein-Protein Interactions in the Ethylene Pathway in the Different Ethylene Receptor Subfamilies. Frontiers in Plant Science, 2019, 10, 726.	3.6	18
18	CENTRORADIALIS Interacts with <i>FLOWERING LOCUS T</i> -Like Genes to Control Floret Development and Grain Number. Plant Physiology, 2019, 180, 1013-1030.	4.8	40

#	Article	IF	CITATIONS
19	Over the rainbow: A practical guide for fluorescent protein selection in plant FRET experiments. Plant Direct, 2019, 3, e00189.	1.9	15
20	Fluorescent reporter lines for auxin and cytokinin signalling in barley (Hordeum vulgare). PLoS ONE, 2018, 13, e0196086.	2.5	21
21	The Arabidopsis JAGGED LATERAL ORGANS (JLO) gene sensitizes plants to auxin. Journal of Experimental Botany, 2017, 68, 2741-2755.	4.8	11
22	Studying Protein–Protein Interactions In Planta Using Advanced Fluorescence Microscopy. Methods in Molecular Biology, 2017, 1610, 267-285.	0.9	6
23	In vivo FRET–FLIM reveals cell-type-specific protein interactions in Arabidopsis roots. Nature, 2017, 548, 97-102.	27.8	128
24	Antagonistic Transcription Factor Complexes Modulate the Floral Transition in Rice. Plant Cell, 2017, 29, 2801-2816.	6.6	59
25	Unique and Conserved Features of the Barley Root Meristem. Frontiers in Plant Science, 2017, 8, 1240.	3.6	41
26	Q&A: How does peptide signaling direct plant development?. BMC Biology, 2016, 14, 58.	3.8	34
27	Arabidopsis <scp>CLAVATA</scp> 1 and <scp>CLAVATA</scp> 2 receptors contribute toÂ <i>Ralstonia solanacearum</i> pathogenicity through a miR169â€dependent pathway. New Phytologist, 2016, 211, 502-515.	7.3	74
28	Revealing Structural Features and Affinities of Protein Complexes in Living Cells by MFIS-FRET. Biophysical Journal, 2016, 110, 491a.	0.5	0
29	A Feed-Forward Regulation Sets Cell Fates in Roots. Trends in Plant Science, 2016, 21, 373-375.	8.8	2
30	Rüdiger Simon. Current Biology, 2016, 26, R450-R451.	3.9	0
31	CLAVATA-WUSCHEL signaling in the shoot meristem. Development (Cambridge), 2016, 143, 3238-3248.	2.5	361
32	Shared and distinct functions of the pseudokinase CORYNE (CRN) in shoot and root stem cell maintenance of Arabidopsis. Journal of Experimental Botany, 2016, 67, 4901-4915.	4.8	30
33	Mathematical modelling ofWOX5- andCLE40-mediated columella stem cell homeostasis inArabidopsis. Journal of Experimental Botany, 2015, 66, 5375-5384.	4.8	37
34	Antagonistic peptide technology for functional dissection of CLE peptides revisited. Journal of Experimental Botany, 2015, 66, 5367-5374.	4.8	27
35	Real-time dynamics of peptide ligand–dependent receptor complex formation in planta. Science Signaling, 2015, 8, ra76.	3.6	84
36	Beyond the meristems: similarities in the CLAVATA3 and INFLORESCENCE DEFICIENT IN ABSCISSION peptide mediated signalling pathways. Journal of Experimental Botany, 2015, 66, 5195-5203.	4.8	23

#	Article	IF	CITATIONS
37	TRANSPARENT TESTA GLABRA1 and GLABRA1 Compete for Binding to GLABRA3 in Arabidopsis. Plant Physiology, 2015, 168, 584-597.	4.8	74
38	Peptides take centre stage in plant signalling. Journal of Experimental Botany, 2015, 66, 5135-5138.	4.8	12
39	How boundaries control plant development. Current Opinion in Plant Biology, 2014, 17, 116-125.	7.1	97
40	Comparative Transcriptome Atlases Reveal Altered Gene Expression Modules between Two Cleomaceae C3 and C4 Plant Species Â. Plant Cell, 2014, 26, 3243-3260.	6.6	106
41	The CLE40 and CRN/CLV2 Signaling Pathways Antagonistically Control Root Meristem Growth in Arabidopsis. Molecular Plant, 2014, 7, 1619-1636.	8.3	42
42	Characterizing Membrane Protein Interactions in Vivo by Multiparameter Fluorescence Image Spectroscopy. Biophysical Journal, 2014, 106, 399a-400a.	0.5	0
43	An integrative model of the control of ovule primordia formation. Plant Journal, 2013, 76, 446-455.	5.7	105
44	Moderation of Arabidopsis Root Stemness by CLAVATA1 and ARABIDOPSIS CRINKLY4 Receptor Kinase Complexes. Current Biology, 2013, 23, 362-371.	3.9	347
45	TAF13 interacts with PRC2 members and is essential for Arabidopsis seed development. Developmental Biology, 2013, 379, 28-37.	2.0	22
46	C4 photosynthesis: from evolutionary analyses to strategies for synthetic reconstruction of the trait. Current Opinion in Plant Biology, 2013, 16, 315-321.	7.1	13
47	Gated communities: apoplastic and symplastic signals converge at plasmodesmata to control cell fates. Journal of Experimental Botany, 2013, 64, 5237-5241.	4.8	53
48	Maternal Control of PIN1 Is Required for Female Gametophyte Development in Arabidopsis. PLoS ONE, 2013, 8, e66148.	2.5	106
49	Tackling Drought Stress: RECEPTOR-LIKE KINASES Present New Approaches. Plant Cell, 2012, 24, 2262-2278.	6.6	155
50	<i>Arabidopsis JAGGED LATERAL ORGANS</i> Acts with <i>ASYMMETRIC LEAVES2</i> to Coordinate <i>KNOX</i> and <i>PIN</i> Expression in Shoot and Root Meristems. Plant Cell, 2012, 24, 2917-2933.	6.6	73
51	Receptor Kinases in Plant Meristem Development. Signaling and Communication in Plants, 2012, , 23-39.	0.7	6
52	Peptides Regulating Apical Meristem Development. Signaling and Communication in Plants, 2012, , 25-39.	0.7	3
53	Peptides and receptors controlling root development. Philosophical Transactions of the Royal Society B: Biological Sciences, 2012, 367, 1453-1460.	4.0	23
54	Nematode CLE signaling in Arabidopsis requires CLAVATA2 and CORYNE. Plant Journal, 2011, 65, 430-440.	5.7	108

#	Article	IF	CITATIONS
55	Auxin-Dependent Cell Cycle Reactivation through Transcriptional Regulation of <i>Arabidopsis E2Fa</i> by Lateral Organ Boundary Proteins. Plant Cell, 2011, 23, 3671-3683.	6.6	171
56	Plant primary meristems: shared functions and regulatory mechanisms. Current Opinion in Plant Biology, 2010, 13, 53-58.	7.1	119
57	JAGGED LATERAL ORGAN (JLO) controls auxin dependent patterning during development of the Arabidopsis embryo and root. Plant Molecular Biology, 2010, 74, 479-491.	3.9	43
58	A Dynamic Model for Stem Cell Homeostasis and Patterning in Arabidopsis Meristems. PLoS ONE, 2010, 5, e9189.	2.5	39
59	RPK2 is an essential receptor-like kinase that transmits the CLV3 signal in <i>Arabidopsis</i> . Development (Cambridge), 2010, 137, 4327-4327.	2.5	12
60	RPK2 is an essential receptor-like kinase that transmits the CLV3 signal in <i>Arabidopsis</i> . Development (Cambridge), 2010, 137, 3911-3920.	2.5	291
61	mRNA Detection by Whole Mount In Situ Hybridization (WISH) or Sectioned Tissue In Situ Hybridization (SISH) in Arabidopsis. Methods in Molecular Biology, 2010, 655, 239-251.	0.9	7
62	Is the Arabidopsis root niche protected by sequestration of the CLE40 signal by its putative receptor ACR4?. Plant Signaling and Behavior, 2009, 4, 634-635.	2.4	54
63	A Signaling Module Controlling the Stem Cell Niche in Arabidopsis Root Meristems. Current Biology, 2009, 19, 909-914.	3.9	440
64	Interdomain Signaling in Stem Cell Maintenance of Plant Shoot Meristems. Molecules and Cells, 2009, 27, 615-620.	2.6	21
65	Stem Cell Signaling in Arabidopsis Requires CRN to Localize CLV2 to the Plasma Membrane. Plant Physiology, 2009, 152, 166-176.	4.8	283
66	FCS and Sub-diffraction Resolution Fluorescence Imaging of Membrane Receptors in Living Organelles. Biophysical Journal, 2009, 96, 27a.	0.5	0
67	Multiparameter fluorescence imagespectroscopy to study molecular interactions. Photochemical and Photobiological Sciences, 2009, 8, 470-480.	2.9	64
68	The meristem-to-organ boundary: more than an extremity of anything. Current Opinion in Genetics and Development, 2008, 18, 287-294.	3.3	75
69	<i>JLO</i> regulates embryo patterning and organ initiation by controlling auxin transport. Plant Signaling and Behavior, 2008, 3, 145-147.	2.4	9
70	The Receptor Kinase CORYNE of <i>Arabidopsis</i> Transmits the Stem Cell–Limiting Signal CLAVATA3 Independently of CLAVATA1. Plant Cell, 2008, 20, 934-946.	6.6	389
71	Arabidopsis JAGGED LATERAL ORGANS Is Expressed in Boundaries and Coordinates KNOX and PIN Activity. Plant Cell, 2007, 19, 1795-1808.	6.6	133
72	Dynamic and Compensatory Responses of Arabidopsis Shoot and Floral Meristems to CLV3 Signaling. Plant Cell, 2006, 18, 1188-1198.	6.6	164

#	Article	IF	CITATIONS
73	BOTANY: Plant Cells CLEave Their Way to Differentiation. Science, 2006, 313, 773-774.	12.6	8
74	Plant stem cell niches. International Journal of Developmental Biology, 2005, 49, 479-489.	0.6	71
75	A transposon-based activation-tagging population inArabidopsis thaliana(TAMARA) and its application in the identification of dominant developmental and metabolic mutations. FEBS Letters, 2005, 579, 4622-4628.	2.8	38
76	Loss of CLE40, a protein functionally equivalent to the stem cell restricting signal CLV3, enhances root waving in Arabidopsis. Development Genes and Evolution, 2003, 213, 371-381.	0.9	204
77	The ethanol switch: a tool for tissue-specific gene induction during plant development. Plant Journal, 2003, 36, 918-930.	5.7	115
78	The DORNRÖSCHEN/ENHANCER OF SHOOT REGENERATION1 Gene of Arabidopsis Acts in the Control of Meristem Cell Fate and Lateral Organ Development. Plant Cell, 2003, 15, 694-705.	6.6	154
79	Regulation of CLV3 Expression by Two Homeobox Genes in Arabidopsis. Plant Physiology, 2002, 129, 565-575.	4.8	269
80	Function of plant shoot meristems. Seminars in Cell and Developmental Biology, 2001, 12, 357-362.	5.0	8
81	A Molecular Link between Stem Cell Regulation and Floral Patterning in Arabidopsis. Cell, 2001, 105, 793-803.	28.9	650
82	Functional domains in plant shoot meristems. BioEssays, 2001, 23, 134-141.	2.5	40
83	Arabidopsis Research 2001. Plant Cell, 2001, 13, 1973-1982.	6.6	7
84	Arabidopsis Research 2001. Plant Cell, 2001, 13, 1973.	6.6	0
85	Dependence of Stem Cell Fate in Arabidopsis on a Feedback Loop Regulated by CLV3 Activity. Science, 2000, 289, 617-619.	12.6	1,021
86	Signaling Cell Fate in Plant Meristems. Cell, 2000, 103, 835-838.	28.9	25
87	The Antirrhinum ERG gene encodes a protein related to bacterial small GTPases and is required for embryonic viability. Current Biology, 1998, 8, 1079-1082.	3.9	33
88	Arabidopsisgenes that regulate flowering time in response to day-length. Seminars in Cell and Developmental Biology, 1996, 7, 419-425.	5.0	17
89	Activation of floral meristem identity genes in Arabidopsis. Nature, 1996, 384, 59-62.	27.8	351
90	Parallels between Unusual Floral Organs and FIMBRIATA, Genes Controlling Flower Development in Arabidopsis and Antirrhinum. Plant Cell, 1995, 7, 1501.	6.6	1

#	Article	IF	CITATIONS
91	The CONSTANS gene of arabidopsis promotes flowering and encodes a protein showing similarities to zinc finger transcription factors. Cell, 1995, 80, 847-857.	28.9	1,287
92	Parallels between UNUSUAL FLORAL ORGANS and FIMBRIATA, genes controlling flower development in Arabidopsis and Antirrhinum Plant Cell, 1995, 7, 1501-1510.	6.6	198
93	Fimbriata controls flower development by mediating between meristem and organ identity genes. Cell, 1994, 78, 99-107.	28.9	153
94	Transposable element Ds2 of Zea mays influences polyadenylation and splice site selection. Molecular Genetics and Genomics, 1987, 209, 198-199.	2.4	29