

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/30255/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Host CLIC4 expression in the tumor microenvironment is essential for breast cancer metastatic competence. PLoS Genetics, 2022, 18, e1010271.	1.5	2
2	KRAS mutation in pancreatic cancer. Seminars in Oncology, 2021, 48, 10-18.	0.8	95
3	Metabolic supervision by PPIP5K, an inositol pyrophosphate kinase/phosphatase, controls proliferation of the HCT116 tumor cell line. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	3.3	16
4	Loss of the wild-type KRAS allele promotes pancreatic cancer progression through functional activation of YAP1. Oncogene, 2021, 40, 6759-6771.	2.6	13
5	A systematic genome-wide mapping of oncogenic mutation selection during CRISPR-Cas9 genome editing. Nature Communications, 2021, 12, 6512.	5.8	24
6	Systematic exploration of different E3 ubiquitin ligases: an approach towards potent and selective CDK6 degraders. Chemical Science, 2020, 11, 3474-3486.	3.7	77
7	MAP kinase and autophagy pathways cooperate to maintain RAS mutant cancer cell survival. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 4508-4517.	3.3	97
8	Multiplexed CRISPR/Cas9 gene knockout with simple crRNA:tracrRNA co-transfection. Cell and Bioscience, 2019, 9, 41.	2.1	11
9	The Achilles Heel of Malignant Rhabdoid Tumors. Cancer Research, 2019, 79, 2808-2809.	0.4	0
10	Genome-Wide RNAi Screen Identifies PMPCB as a Therapeutic Vulnerability in EpCAM+ Hepatocellular Carcinoma. Cancer Research, 2019, 79, 2379-2391.	0.4	19
11	Genomeâ€wide prediction of synthetic rescue mediators of resistance to targeted and immunotherapy. Molecular Systems Biology, 2019, 15, e8323.	3.2	25
12	Tau Positron-Emission Tomography in Former National Football League Players. New England Journal of Medicine, 2019, 380, 1716-1725.	13.9	165
13	The targetable kinase PIM1 drives ALK inhibitor resistance in high-risk neuroblastoma independent of MYCN status. Nature Communications, 2019, 10, 5428.	5.8	28
14	Differential Effector Engagement by Oncogenic KRAS. Cell Reports, 2018, 22, 1889-1902.	2.9	101
15	Oncogenic RAS isoforms show a hierarchical requirement for the guanine nucleotide exchange factor SOS2 to mediate cell transformation. Science Signaling, 2018, 11, .	1.6	38
16	Carnitine palmitoyltransferase gene upregulation by linoleic acid induces CD4+ T cell apoptosis promoting HCC development. Cell Death and Disease, 2018, 9, 620.	2.7	90
17	Cenetic interrogation of replicative senescence uncovers a dual role for USP28 in coordinating the p53 and CATA4 branches of the senescence program. Genes and Development, 2017, 31, 1933-1938.	2.7	28
18	CRISPR/Cas9-mediated gene knockout is insensitive to target copy number but is dependent on guide RNA potency and Cas9/sgRNA threshold expression level. Nucleic Acids Research, 2017, 45, 12039-12053.	6.5	64

Ji Luo

#	Article	IF	CITATIONS
19	Global Inhibition with Specific Activation: How p53 and MYC Redistribute the Transcriptome in the DNA Double-Strand Break Response. Molecular Cell, 2017, 67, 1013-1025.e9.	4.5	55
20	Flexible CRISPR library construction using parallel oligonucleotide retrieval. Nucleic Acids Research, 2017, 45, e101-e101.	6.5	11
21	A synthetic-lethality RNAi screen reveals an ERK-mTOR co-targeting pro-apoptotic switch in <i>PIK3CA</i> + oral cancers. Oncotarget, 2016, 7, 10696-10709.	0.8	19
22	One-step immortalization of primary human airway epithelial cells capable of oncogenic transformation. Cell and Bioscience, 2016, 6, 57.	2.1	9
23	NAFLD causes selective CD4+ T lymphocyte loss and promotes hepatocarcinogenesis. Nature, 2016, 531, 253-257.	13.7	552
24	SUMO wrestling with Ras. Small GTPases, 2016, 7, 39-46.	0.7	5
25	Activation of RAF1 (c-RAF) by the Marine Alkaloid Lasonolide A Induces Rapid Premature Chromosome Condensation. Marine Drugs, 2015, 13, 3625-3639.	2.2	15
26	LAMC2 enhances the metastatic potential of lung adenocarcinoma. Cell Death and Differentiation, 2015, 22, 1341-1352.	5.0	89
27	Enhancer of rudimentary homolog regulates DNA damage response in hepatocellular carcinoma. Scientific Reports, 2015, 5, 9357.	1.6	26
28	Oncogenesis driven by the Ras/Raf pathway requires the SUMO E2 ligase Ubc9. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, E1724-33.	3.3	57
29	High mesothelin expression in advanced lung adenocarcinoma is associated with <i>KRAS</i> mutations and a poor prognosis. Oncotarget, 2015, 6, 11694-11703.	0.8	66
30	Development of siRNA Payloads to Target <i>KRAS</i> -Mutant Cancer. Cancer Discovery, 2014, 4, 1182-1197.	7.7	93
31	Drugging the undruggable RAS: Mission Possible?. Nature Reviews Drug Discovery, 2014, 13, 828-851.	21.5	1,484
32	Using Pooled miR30-shRNA Library for Cancer Lethal and Synthetic Lethal Screens. Methods in Molecular Biology, 2014, 1176, 45-58.	0.4	1
33	A High-Throughput Assay for Small Molecule Destabilizers of the KRAS Oncoprotein. PLoS ONE, 2014, 9, e103836.	1.1	18
34	Selective targeting of KRAS-Mutant cells by miR-126 through repression of multiple genes essential for the survival of KRAS-Mutant cells. Oncotarget, 2014, 5, 7635-7650.	0.8	21
35	Synthetic Lethal Genetic Screens in Ras Mutant Cancers. The Enzymes, 2013, 34 Pt. B, 201-219.	0.7	7
36	Mixed lineage kinase domain-like is a key receptor interacting protein 3 downstream component of TNF-induced necrosis. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 5322-5327.	3.3	728

Ji Luo

#	Article	IF	CITATIONS
37	A primer on using pooled shRNA libraries for functional genomic screens. Acta Biochimica Et Biophysica Sinica, 2012, 44, 103-112.	0.9	24
38	Recurrent Hemizygous Deletions in Cancers May Optimize Proliferative Potential. Science, 2012, 337, 104-109.	6.0	172
39	Cancer's sweet tooth for serine. Breast Cancer Research, 2011, 13, 317.	2.2	29
40	The Phosphoinositide 3-Kinase Regulatory Subunit p85α Can Exert Tumor Suppressor Properties through Negative Regulation of Growth Factor Signaling. Cancer Research, 2010, 70, 5305-5315.	0.4	140
41	Class IA Phosphatidylinositol 3-Kinase in Pancreatic Î ² Cells Controls Insulin Secretion by Multiple Mechanisms. Cell Metabolism, 2010, 12, 619-632.	7.2	101
42	Phosphatidyl Inositol 3-Kinase Signaling in Hypothalamic Proopiomelanocortin Neurons Contributes to the Regulation of Glucose Homeostasis. Endocrinology, 2009, 150, 4874-4882.	1.4	82
43	Male-Biased Effects of Gonadotropin-Releasing Hormone Neuron-Specific Deletion of the Phosphoinositide 3-Kinase Regulatory Subunit p851± on the Reproductive Axis. Endocrinology, 2009, 150, 4203-4212.	1.4	11
44	Principles of Cancer Therapy: Oncogene and Non-oncogene Addiction. Cell, 2009, 136, 823-837.	13.5	1,576
45	A Genome-wide RNAi Screen Identifies Multiple Synthetic Lethal Interactions with the Ras Oncogene. Cell, 2009, 137, 835-848.	13.5	912
46	Cancer Proliferation Gene Discovery Through Functional Genomics. Science, 2008, 319, 620-624.	6.0	365
47	Acute effects of leptin require PI3K signaling in hypothalamic proopiomelanocortin neurons in mice. Journal of Clinical Investigation, 2008, 118, 1796-1805.	3.9	293
48	Class 1A PI3K regulates vessel integrity during development and tumorigenesis. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105, 9739-9744.	3.3	96
49	T-cell function is partially maintained in the absence of class IA phosphoinositide 3-kinase signaling. Blood, 2007, 109, 2894-2902.	0.6	54
50	Non-Oncogene Addiction and the Stress Phenotype of Cancer Cells. Cell, 2007, 130, 986-988.	13.5	320
51	The p85α Regulatory Subunit of Phosphoinositide 3-Kinase Potentiates c-Jun N-Terminal Kinase-Mediated Insulin Resistance. Molecular and Cellular Biology, 2007, 27, 2830-2840.	1.1	74
52	Wortmannin-C20 Conjugates Generate Wortmannin. Journal of Medicinal Chemistry, 2006, 49, 740-747.	2.9	20
53	Loss of class IA PI3K signaling in muscle leads to impaired muscle growth, insulin response, and hyperlipidemia. Cell Metabolism, 2006, 3, 355-366.	7.2	96
54	Divergent regulation of hepatic glucose and lipid metabolism by phosphoinositide 3-kinase via Akt and PKCλ/ζ. Cell Metabolism, 2006, 3, 343-353.	7.2	249

Ji Luo

#	Article	IF	CITATIONS
55	The evolution of phosphatidylinositol 3-kinases as regulators of growth and metabolism. Nature Reviews Genetics, 2006, 7, 606-619.	7.7	2,833
56	Phosphoinositide 3-kinase regulatory subunit p85Â suppresses insulin action via positive regulation of PTEN. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103, 12093-12097.	3.3	149
57	Sjogren's syndrome-like disease in mice with T cells lacking class 1A phosphoinositide-3-kinase. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103, 16882-16887.	3.3	68
58	Breast Cancer–Associated PIK3CA Mutations Are Oncogenic in Mammary Epithelial Cells. Cancer Research, 2005, 65, 10992-11000.	0.4	456
59	Class IA Phosphoinositide 3-Kinase Regulates Heart Size and Physiological Cardiac Hypertrophy. Molecular and Cellular Biology, 2005, 25, 9491-9502.	1.1	187
60	The p85 regulatory subunit of phosphoinositide 3-kinase down-regulates IRS-1 signaling via the formation of a sequestration complex. Journal of Cell Biology, 2005, 170, 455-464.	2.3	146
61	Then Negative Regulation of Phosphoinositide 3-Kinase Signaling by p85 and Its Implication in Cancer. Cell Cycle, 2005, 4, 1309-1312.	1.3	92
62	Modulation of epithelial neoplasia and lymphoid hyperplasia in PTEN+/- mice by the p85 regulatory subunits of phosphoinositide 3-kinase. Proceedings of the National Academy of Sciences of the United States of America, 2005, 102, 10238-10243.	3.3	43
63	Synthesis and Activity of C11-Modified Wortmannin Probes for PI3 Kinase. Bioconjugate Chemistry, 2005, 16, 669-675.	1.8	17
64	Targeting the PI3K-Akt pathway in human cancer. Cancer Cell, 2003, 4, 257-262.	7.7	1,230
65	Phosphoinositide biology – messages from lipids. Nature Cell Biology, 2000, 2, E190-E190.	4.6	0