
Ignacio MarÃ-n

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3025341/publications.pdf Version: 2024-02-01

Ιςνιλοίο Μαράη

#	Article	IF	CITATIONS
1	Tumor Necrosis Factor Superfamily: Ancestral Functions and Remodeling in Early Vertebrate Evolution. Genome Biology and Evolution, 2020, 12, 2074-2092.	2.5	6
2	Origin and evolution of fungal HECT ubiquitin ligases. Scientific Reports, 2018, 8, 6419.	3.3	12
3	Origin and Diversification of Meprin Proteases. PLoS ONE, 2015, 10, e0135924.	2.5	5
4	Identification of HECT E3 ubiquitin ligase family genes involved in stem cell regulation and regeneration in planarians. Developmental Biology, 2015, 404, 21-34.	2.0	26
5	SurpriseMe: an integrated tool for network community structure characterization using Surprise maximization. Bioinformatics, 2014, 30, 1041-1042.	4.1	19
6	The ubiquilin gene family: evolutionary patterns and functional insights. BMC Evolutionary Biology, 2014, 14, 63.	3.2	67
7	Surprise maximization reveals the community structure of complex networks. Scientific Reports, 2013, 3, 1060.	3.3	66
8	Exploring the limits of community detection strategies in complex networks. Scientific Reports, 2013, 3, 2216.	3.3	58
9	Evolution of Plant HECT Ubiquitin Ligases. PLoS ONE, 2013, 8, e68536.	2.5	38
10	Closed benchmarks for network community structure characterization. Physical Review E, 2012, 85, 026109.	2.1	14
11	Origin and Diversification of TRIM Ubiquitin Ligases. PLoS ONE, 2012, 7, e50030.	2.5	53
12	Deciphering Network Community Structure by Surprise. PLoS ONE, 2011, 6, e24195.	2.5	81
13	Ancient origin of animal U-box ubiquitin ligases. BMC Evolutionary Biology, 2010, 10, 331.	3.2	23
14	Animal HECT ubiquitin ligases: evolution and functional implications. BMC Evolutionary Biology, 2010, 10, 56.	3.2	65
15	A sequence motif enriched in regions bound by the Drosophila dosage compensation complex. BMC Genomics, 2010, 11, 169.	2.8	8
16	Jerarca: Efficient Analysis of Complex Networks Using Hierarchical Clustering. PLoS ONE, 2010, 5, e11585.	2.5	37
17	GIN Transposons: Genetic Elements Linking Retrotransposons and Genes. Molecular Biology and Evolution, 2010, 27, 1903-1911.	8.9	13
18	Diversification and Specialization of Plant RBR Ubiquitin Ligases. PLoS ONE, 2010, 5, e11579.	2.5	26

Ignacio MarÃn

#	Article	IF	CITATIONS
19	CGIN1: A Retroviral Contribution to Mammalian Genomes. Molecular Biology and Evolution, 2009, 26, 2167-2170.	8.9	32
20	Diversification of the cullin family. BMC Evolutionary Biology, 2009, 9, 267.	3.2	48
21	Interactome and Gene Ontology provide congruent yet subtly different views of a eukaryotic cell. BMC Systems Biology, 2009, 3, 69.	3.0	6
22	RBR Ubiquitin Ligases: Diversification and Streamlining in Animal Lineages. Journal of Molecular Evolution, 2009, 69, 54-64.	1.8	31
23	Basic networks: Definition and applications. Journal of Theoretical Biology, 2009, 258, 53-59.	1.7	1
24	Ancient Origin of the Parkinson Disease Gene LRRK2. Journal of Molecular Evolution, 2008, 67, 41-50.	1.8	68
25	How Athila retrotransposons survive in the Arabidopsis genome. BMC Genomics, 2008, 9, 219.	2.8	15
26	Fast comparison of DNA sequences by oligonucleotide profiling. BMC Research Notes, 2008, 1, 5.	1.4	7
27	The Roco protein family: a functional perspective. FASEB Journal, 2008, 22, 3103-3110.	0.5	113
28	A general strategy to determine the congruence between a hierarchical and a non-hierarchical classification. BMC Bioinformatics, 2007, 8, 442.	2.6	6
29	Global patterns of sequence evolution in Drosophila. BMC Genomics, 2007, 8, 408.	2.8	17
30	Comparative Genomics and Protein Domain Graph Analyses Link Ubiquitination and RNA Metabolism. Journal of Molecular Biology, 2006, 357, 9-17.	4.2	33
31	Proteasome-Related HslU and HslV Genes Typical of Eubacteria Are Widespread in Eukaryotes. Journal of Molecular Evolution, 2006, 63, 504-512.	1.8	17
32	UVPAR: fast detection of functional shifts in duplicate genes. BMC Bioinformatics, 2006, 7, 174.	2.6	5
33	The Parkinson Disease Gene LRRK2: Evolutionary and Structural Insights. Molecular Biology and Evolution, 2006, 23, 2423-2433.	8.9	149
34	A New Evolutionary Paradigm for the Parkinson Disease Gene DJ-1. Molecular Biology and Evolution, 2006, 24, 551-561.	8.9	64
35	Parkinson Disease: From Cellular and Animal Models to Genomics. Current Genomics, 2005, 6, 241-250.	1.6	1
36	Iterative Cluster Analysis of Protein Interaction Data. Bioinformatics, 2005, 21, 364-378.	4.1	199

Ignacio MarÃn

#	Article	IF	CITATIONS
37	New Insights into the Evolutionary History of Type 1 Rhodopsins. Journal of Molecular Evolution, 2004, 58, 348-358.	1.8	67
38	Parkin and relatives: the RBR family of ubiquitin ligases. Physiological Genomics, 2004, 17, 253-263.	2.3	103
39	Evolution of Chromatin-Remodeling Complexes: Comparative Genomics Reveals the Ancient Origin of "Novel" Compensasome Genes. Journal of Molecular Evolution, 2003, 56, 527-539.	1.8	50
40	Evolutionary and Structural Analyses of GDAP1, Involved in Charcot-Marie-Tooth Disease, Characterize a Novel Class of Glutathione Transferase-Related Genes. Molecular Biology and Evolution, 2003, 21, 176-187.	8.9	90
41	Selection on Coding Regions Determined Hox7 Genes Evolution. Molecular Biology and Evolution, 2003, 20, 2104-2112.	8.9	29
42	Comparative Genomics of the RBR Family, Including the Parkinson's Disease–Related Gene Parkin and the Genes of the Ariadne Subfamily. Molecular Biology and Evolution, 2002, 19, 2039-2050.	8.9	101
43	The gene encoding ganglioside-induced differentiation-associated protein 1 is mutated in axonal Charcot-Marie-Tooth type 4A disease. Nature Genetics, 2002, 30, 22-25.	21.4	341
44	Tracing the Origin of the Compensasome: Evolutionary History of DEAH Helicase and MYST Acetyltransferase Gene Families. Molecular Biology and Evolution, 2001, 18, 330-343.	8.9	44
45	Detecting Changes in the Functional Constraints of Paralogous Genes. Journal of Molecular Evolution, 2001, 52, 17-28.	1.8	15
46	A Mammalian Gene Evolved from the Integrase Domain of an LTR Retrotransposon. Molecular Biology and Evolution, 2001, 18, 1597-1600.	8.9	30
47	Ty3/Gypsy Retrotransposons: Description of New Arabidopsis thaliana Elements and Evolutionary Perspectives Derived from Comparative Genomic Data. Molecular Biology and Evolution, 2000, 17, 1040-1049.	8.9	96
48	The evolution of dosage-compensation mechanisms. BioEssays, 2000, 22, 1106-1114.	2.5	119
49	Origin and Evolution of the Regulatory Gene male-specific lethal-3. Molecular Biology and Evolution, 2000, 17, 1240-1250.	8.9	45
50	The Evolutionary Dynamics of Sex Determination. Science, 1998, 281, 1990-1994.	12.6	286
51	Brief communication. Stable Drosophila buzzatii-Drosophila koepferae hybrids. , 1998, 89, 336-339.		6
52	Evolutionary Relationships Among the Members of an Ancient Class of Non-LTR Retrotransposons Found in the Nematode Caenorhabditis elegans. Molecular Biology and Evolution, 1998, 15, 1390-1402.	8.9	26
53	Sexual Isolation inDrosophila. III. Estimating Isolation Using Male-choice Experiments. Journal of Theoretical Biology, 1997, 188, 515-524.	1.7	7
54	Evolutionary conservation and molecular characteristics of repetitive sequences of Drosophila koepferae. Heredity, 1996, 76, 355-366.	2.6	9

Ignacio MarÃn

#	Article	IF	CITATIONS
55	The dosage compensation system of Drosophila is co-opted by newly evolved X chromosomes. Nature, 1996, 383, 160-163.	27.8	131
56	Characterization ofGandalf, a new inverted-repeat transposable element ofDrosophila koepferae. Molecular Genetics and Genomics, 1995, 248, 423-433.	2.4	11
57	Sexual isolation in Drosophila. II. Intraspecific variation in mate recognition systems. Journal of Evolutionary Biology, 1994, 7, 303-314.	1.7	8
58	Dosage Compensation in Drosophila. Annual Review of Genetics, 1994, 28, 491-521.	7.6	216
59	Reproductive Relationships among Ten Species of the Drosophila repleta Group from South America and the West Indies. Evolution; International Journal of Organic Evolution, 1993, 47, 1616.	2.3	11
60	REPRODUCTIVE RELATIONSHIPS AMONG TEN SPECIES OF THE <i>DROSOPHILA REPLETA</i> GROUP FROM SOUTH AMERICA AND THE WEST INDIES. Evolution; International Journal of Organic Evolution, 1993, 47, 1616-1624.	2.3	22
61	The evolutionary history of Drosophila buzzatii. XXIII. High content of nonsatellite repetitive DNA in D. buzzatii and in its sibling D. koepferae. Genome, 1992, 35, 967-974.	2.0	17
62	Sexual isolation in Drosophila I. Theoretical models for multiple-choice experiments. Journal of Theoretical Biology, 1991, 152, 271-284.	1.7	15
63	A fast algorithm for the exhaustive analysis of 12-nucleotide-long DNA sequences. Applications to human genomics. , 0, , .		1