Ignacio MarÃ-n

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3025341/publications.pdf

Version: 2024-02-01

159585 149698 3,329 63 30 56 citations g-index h-index papers 66 66 66 3826 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	The gene encoding ganglioside-induced differentiation-associated protein 1 is mutated in axonal Charcot-Marie-Tooth type 4A disease. Nature Genetics, 2002, 30, 22-25.	21.4	341
2	The Evolutionary Dynamics of Sex Determination. Science, 1998, 281, 1990-1994.	12.6	286
3	Dosage Compensation in Drosophila. Annual Review of Genetics, 1994, 28, 491-521.	7.6	216
4	Iterative Cluster Analysis of Protein Interaction Data. Bioinformatics, 2005, 21, 364-378.	4.1	199
5	The Parkinson Disease Gene LRRK2: Evolutionary and Structural Insights. Molecular Biology and Evolution, 2006, 23, 2423-2433.	8.9	149
6	The dosage compensation system of Drosophila is co-opted by newly evolved X chromosomes. Nature, 1996, 383, 160-163.	27.8	131
7	The evolution of dosage-compensation mechanisms. BioEssays, 2000, 22, 1106-1114.	2.5	119
8	The Roco protein family: a functional perspective. FASEB Journal, 2008, 22, 3103-3110.	0.5	113
9	Parkin and relatives: the RBR family of ubiquitin ligases. Physiological Genomics, 2004, 17, 253-263.	2.3	103
10	Comparative Genomics of the RBR Family, Including the Parkinson's Disease–Related Gene Parkin and the Genes of the Ariadne Subfamily. Molecular Biology and Evolution, 2002, 19, 2039-2050.	8.9	101
11	Ty3/Gypsy Retrotransposons: Description of New Arabidopsis thaliana Elements and Evolutionary Perspectives Derived from Comparative Genomic Data. Molecular Biology and Evolution, 2000, 17, 1040-1049.	8.9	96
12	Evolutionary and Structural Analyses of GDAP1, Involved in Charcot-Marie-Tooth Disease, Characterize a Novel Class of Glutathione Transferase-Related Genes. Molecular Biology and Evolution, 2003, 21, 176-187.	8.9	90
13	Deciphering Network Community Structure by Surprise. PLoS ONE, 2011, 6, e24195.	2.5	81
14	Ancient Origin of the Parkinson Disease Gene LRRK2. Journal of Molecular Evolution, 2008, 67, 41-50.	1.8	68
15	New Insights into the Evolutionary History of Type 1 Rhodopsins. Journal of Molecular Evolution, 2004, 58, 348-358.	1.8	67
16	The ubiquilin gene family: evolutionary patterns and functional insights. BMC Evolutionary Biology, 2014, 14, 63.	3.2	67
17	Surprise maximization reveals the community structure of complex networks. Scientific Reports, 2013, 3, 1060.	3.3	66
18	Animal HECT ubiquitin ligases: evolution and functional implications. BMC Evolutionary Biology, 2010, 10, 56.	3.2	65

#	Article	IF	CITATIONS
19	A New Evolutionary Paradigm for the Parkinson Disease Gene DJ-1. Molecular Biology and Evolution, 2006, 24, 551-561.	8.9	64
20	Exploring the limits of community detection strategies in complex networks. Scientific Reports, 2013, 3, 2216.	3.3	58
21	Origin and Diversification of TRIM Ubiquitin Ligases. PLoS ONE, 2012, 7, e50030.	2.5	53
22	Evolution of Chromatin-Remodeling Complexes: Comparative Genomics Reveals the Ancient Origin of "Novel" Compensasome Genes. Journal of Molecular Evolution, 2003, 56, 527-539.	1.8	50
23	Diversification of the cullin family. BMC Evolutionary Biology, 2009, 9, 267.	3.2	48
24	Origin and Evolution of the Regulatory Gene male-specific lethal-3. Molecular Biology and Evolution, 2000, 17, 1240-1250.	8.9	45
25	Tracing the Origin of the Compensasome: Evolutionary History of DEAH Helicase and MYST Acetyltransferase Gene Families. Molecular Biology and Evolution, 2001, 18, 330-343.	8.9	44
26	Evolution of Plant HECT Ubiquitin Ligases. PLoS ONE, 2013, 8, e68536.	2.5	38
27	Jerarca: Efficient Analysis of Complex Networks Using Hierarchical Clustering. PLoS ONE, 2010, 5, e11585.	2.5	37
28	Comparative Genomics and Protein Domain Graph Analyses Link Ubiquitination and RNA Metabolism. Journal of Molecular Biology, 2006, 357, 9-17.	4.2	33
29	CGIN1: A Retroviral Contribution to Mammalian Genomes. Molecular Biology and Evolution, 2009, 26, 2167-2170.	8.9	32
30	RBR Ubiquitin Ligases: Diversification and Streamlining in Animal Lineages. Journal of Molecular Evolution, 2009, 69, 54-64.	1.8	31
31	A Mammalian Gene Evolved from the Integrase Domain of an LTR Retrotransposon. Molecular Biology and Evolution, 2001, 18, 1597-1600.	8.9	30
32	Selection on Coding Regions Determined Hox7 Genes Evolution. Molecular Biology and Evolution, 2003, 20, 2104-2112.	8.9	29
33	Evolutionary Relationships Among the Members of an Ancient Class of Non-LTR Retrotransposons Found in the Nematode Caenorhabditis elegans. Molecular Biology and Evolution, 1998, 15, 1390-1402.	8.9	26
34	Identification of HECT E3 ubiquitin ligase family genes involved in stem cell regulation and regeneration in planarians. Developmental Biology, 2015, 404, 21-34.	2.0	26
35	Diversification and Specialization of Plant RBR Ubiquitin Ligases. PLoS ONE, 2010, 5, e11579.	2.5	26
36	Ancient origin of animal U-box ubiquitin ligases. BMC Evolutionary Biology, 2010, 10, 331.	3.2	23

#	Article	IF	CITATIONS
37	REPRODUCTIVE RELATIONSHIPS AMONG TEN SPECIES OF THE <i>DROSOPHILA REPLETA</i> GROUP FROM SOUTH AMERICA AND THE WEST INDIES. Evolution; International Journal of Organic Evolution, 1993, 47, 1616-1624.	2.3	22
38	SurpriseMe: an integrated tool for network community structure characterization using Surprise maximization. Bioinformatics, 2014, 30, 1041-1042.	4.1	19
39	The evolutionary history of Drosophila buzzatii. XXIII. High content of nonsatellite repetitive DNA in D. buzzatii and in its sibling D. koepferae. Genome, 1992, 35, 967-974.	2.0	17
40	Proteasome-Related HslU and HslV Genes Typical of Eubacteria Are Widespread in Eukaryotes. Journal of Molecular Evolution, 2006, 63, 504-512.	1.8	17
41	Global patterns of sequence evolution in Drosophila. BMC Genomics, 2007, 8, 408.	2.8	17
42	Sexual isolation in Drosophila I. Theoretical models for multiple-choice experiments. Journal of Theoretical Biology, 1991, 152, 271-284.	1.7	15
43	Detecting Changes in the Functional Constraints of Paralogous Genes. Journal of Molecular Evolution, 2001, 52, 17-28.	1.8	15
44	How Athila retrotransposons survive in the Arabidopsis genome. BMC Genomics, 2008, 9, 219.	2.8	15
45	Closed benchmarks for network community structure characterization. Physical Review E, 2012, 85, 026109.	2.1	14
46	GIN Transposons: Genetic Elements Linking Retrotransposons and Genes. Molecular Biology and Evolution, 2010, 27, 1903-1911.	8.9	13
47	Origin and evolution of fungal HECT ubiquitin ligases. Scientific Reports, 2018, 8, 6419.	3.3	12
48	Reproductive Relationships among Ten Species of the Drosophila repleta Group from South America and the West Indies. Evolution; International Journal of Organic Evolution, 1993, 47, 1616.	2.3	11
49	Characterization of Gandalf, a new inverted-repeat transposable element of Drosophila koepferae. Molecular Genetics and Genomics, 1995, 248, 423-433.	2.4	11
50	Evolutionary conservation and molecular characteristics of repetitive sequences of Drosophila koepferae. Heredity, 1996, 76, 355-366.	2.6	9
51	Sexual isolation in Drosophila. II. Intraspecific variation in mate recognition systems. Journal of Evolutionary Biology, 1994, 7, 303-314.	1.7	8
52	A sequence motif enriched in regions bound by the Drosophila dosage compensation complex. BMC Genomics, 2010, 11, 169.	2.8	8
53	Sexual Isolation inDrosophila. III. Estimating Isolation Using Male-choice Experiments. Journal of Theoretical Biology, 1997, 188, 515-524.	1.7	7
54	Fast comparison of DNA sequences by oligonucleotide profiling. BMC Research Notes, 2008, 1, 5.	1.4	7

#	Article	IF	CITATIONS
55	Brief communication. Stable Drosophila buzzatii-Drosophila koepferae hybrids. , 1998, 89, 336-339.		6
56	A general strategy to determine the congruence between a hierarchical and a non-hierarchical classification. BMC Bioinformatics, 2007, 8, 442.	2.6	6
57	Interactome and Gene Ontology provide congruent yet subtly different views of a eukaryotic cell. BMC Systems Biology, 2009, 3, 69.	3.0	6
58	Tumor Necrosis Factor Superfamily: Ancestral Functions and Remodeling in Early Vertebrate Evolution. Genome Biology and Evolution, 2020, 12, 2074-2092.	2.5	6
59	UVPAR: fast detection of functional shifts in duplicate genes. BMC Bioinformatics, 2006, 7, 174.	2.6	5
60	Origin and Diversification of Meprin Proteases. PLoS ONE, 2015, 10, e0135924.	2.5	5
61	A fast algorithm for the exhaustive analysis of 12-nucleotide-long DNA sequences. Applications to human genomics. , 0, , .		1
62	Parkinson Disease: From Cellular and Animal Models to Genomics. Current Genomics, 2005, 6, 241-250.	1.6	1
63	Basic networks: Definition and applications. Journal of Theoretical Biology, 2009, 258, 53-59.	1.7	1