Chang Gong

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3025324/publications.pdf Version: 2024-02-01

CHANG GONG

#	Article	IF	CITATIONS
1	A computational multiscale agent-based model for simulating spatio-temporal tumour immune response to PD1 and PDL1 inhibition. Journal of the Royal Society Interface, 2017, 14, 20170320.	3.4	118
2	Multiscale Agent-Based and Hybrid Modeling of the Tumor Immune Microenvironment. Processes, 2019, 7, 37.	2.8	115
3	A QSP Model for Predicting Clinical Responses to Monotherapy, Combination and Sequential Therapy Following CTLA-4, PD-1, and PD-L1 Checkpoint Blockade. Scientific Reports, 2019, 9, 11286.	3.3	69
4	Predicting lymph node output efficiency using systems biology. Journal of Theoretical Biology, 2013, 335, 169-184.	1.7	54
5	A Computational Model of Neoadjuvant PD-1 Inhibition in Non-Small Cell Lung Cancer. AAPS Journal, 2019, 21, 79.	4.4	53
6	Digital Pathology Analysis Quantifies Spatial Heterogeneity of CD3, CD4, CD8, CD20, and FoxP3 Immune Markers in Triple-Negative Breast Cancer. Frontiers in Physiology, 2020, 11, 583333.	2.8	42
7	Harnessing the Heterogeneity of T Cell Differentiation Fate to Fine-Tune Generation of Effector and Memory T Cells. Frontiers in Immunology, 2014, 5, 57.	4.8	39
8	Computational and Empirical Studies Predict Mycobacterium tuberculosis-Specific T Cells as a Biomarker for Infection Outcome. PLoS Computational Biology, 2016, 12, e1004804.	3.2	38
9	Quantitative Characterization of CD8+ T Cell Clustering and Spatial Heterogeneity in Solid Tumors. Frontiers in Oncology, 2018, 8, 649.	2.8	30
10	A multi-scale approach to designing therapeutics for tuberculosis. Integrative Biology (United) Tj ETQq0 0 0 rgBT	Overlock	10 Tf 50 382

11	A Spatial Quantitative Systems Pharmacology Platform spQSP-IO for Simulations of Tumor–Immune Interactions and Effects of Checkpoint Inhibitor Immunotherapy. Cancers, 2021, 13, 3751.	3.7	18
12	Integrating single cell sequencing with a spatial quantitative systems pharmacology model spQSP for personalized prediction of triple-negative breast cancer immunotherapy response. ImmunoInformatics, 2021, 1-2, 100002.	2.2	18
13	Strategic Priming with Multiple Antigens can Yield Memory Cell Phenotypes Optimized for Infection with Mycobacterium tuberculosis: A Computational Study. Frontiers in Microbiology, 2016, 6, 1477.	3.5	16
14	A population model capturing dynamics of tuberculosis granulomas predicts host infection outcomes. Mathematical Biosciences and Engineering, 2015, 12, 625-642.	1.9	15
15	Abstract 4531: Systems pharmacology to predict cellular biomarkers and optimize mono- and combination-therapy regimens: Focusing on immune checkpoint targets PD-1, PD-L1 and CTLA-4. Cancer Research, 2017, 77, 4531-4531.	0.9	2