List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3025264/publications.pdf Version: 2024-02-01

FUSARETTA RDENNA

#	Article	IF	CITATIONS
1	"A Study in Yellowâ€ı Investigations in the Stereoselectivity of Eneâ€Reductases. ChemBioChem, 2022, 23, .	2.6	21
2	Multi-step chemo-enzymatic synthesis of azelaic and pelargonic acids from the soapstock of high-oleic sunflower oil refinement. Green Chemistry, 2022, 24, 2082-2093.	9.0	6
3	Chemoenzymatic Synthesis of the Most Pleasant Stereoisomer of Jessemal. Journal of Organic Chemistry, 2022, , .	3.2	1
4	Chemo-enzymatic oxidative cleavage of isosafrole for the synthesis of piperonal. Reaction Chemistry and Engineering, 2021, 6, 1591-1600.	3.7	2
5	Enzymatic Methods for the Manipulation and Valorization of Soapstock from Vegetable Oil Refining Processes. Sustainable Chemistry, 2021, 2, 74-91.	4.7	17
6	Oxidation of threo â€9,10â€Đihydroxystearic Acid Mediated by Micrococcus luteus as a Key Step in the Conversion of Oleic Acid into Pelargonic and Azelaic Acids. ChemCatChem, 2021, 13, 3275-3282.	3.7	3
7	Ene-reductase transformation of massoia lactone to δ-decalactone in a continuous-flow reactor. Scientific Reports, 2021, 11, 18794.	3.3	8
8	Multienzymatic Stereoselective Reduction of Tetrasubstituted Cyclic Enones to Halohydrins with Three Contiguous Stereogenic Centers. ACS Catalysis, 2020, 10, 13050-13057.	11.2	15
9	Bacterial Biotransformation of Oleic Acid: New Findings on the Formation of Î ³ -Dodecalactone and 10-Ketostearic Acid in the Culture of Micrococcus luteus. Molecules, 2020, 25, 3024.	3.8	14
10	Immobilization of Old Yellow Enzymes via Covalent or Coordination Bonds. Catalysts, 2020, 10, 260.	3.5	12
11	Conversion of Oleic Acid into Azelaic and Pelargonic Acid by a Chemo-Enzymatic Route. Molecules, 2020, 25, 1882.	3.8	21
12	Continuous-Flow Biocatalytic Process for the Synthesis of the Best Stereoisomers of the Commercial Fragrances Leather Cyclohexanol (4-Isopropylcyclohexanol) and Woody Acetate (4-(Tert-Butyl)Cyclohexyl Acetate). Catalysts, 2020, 10, 102.	3.5	11
13	Biocatalytic retrosynthesis approaches to <scp>d</scp> -(2,4,5-trifluorophenyl)alanine, key precursor of the antidiabetic sitagliptin. Green Chemistry, 2019, 21, 4368-4379.	9.0	20
14	Exploiting the vicinal disubstituent effect on the diastereoselective synthesis of γ and δ lactones. Organic and Biomolecular Chemistry, 2019, 17, 813-821.	2.8	3
15	Stereoselectivity Switch in the Reduction of α-Alkyl-β-Arylenones by Structure-Guided Designed Variants of the Ene Reductase OYE1. Frontiers in Bioengineering and Biotechnology, 2019, 7, 89.	4.1	16
16	Bioprocess Intensification Using Flow Reactors: Stereoselective Oxidation of Achiral 1,3-diols with Immobilized Acetobacter Aceti. Catalysts, 2019, 9, 208.	3.5	21
17	Chemoselective Biohydrogenation of Alkenes in the Presence of Alkynes for the Homologation of 2â€Alkynals/3â€Alkynâ€2â€ones into 4â€Alkynals/Alkynols. Advanced Synthesis and Catalysis, 2019, 361, 2638-	2648.	10
18	Biocatalytic Approach to Chiral β-Nitroalcohols by Enantioselective Alcohol Dehydrogenase-Mediated Reduction of α-Nitroketones. Catalysts, 2018, 8, 308.	3.5	14

ELISABETTA BRENNA

#	Article	IF	CITATIONS
19	Investigating Saccharomyces cerevisiae alkene reductase OYE 3 by substrate profiling, X-ray crystallography and computational methods. Catalysis Science and Technology, 2018, 8, 5003-5016.	4.1	9
20	Chemoâ€Enzymatic Oxidative Rearrangement of Tertiary Allylic Alcohols: Synthetic Application and Integration into a Cascade Process. Advanced Synthesis and Catalysis, 2018, 360, 3677-3686.	4.3	23
21	Exploitation of a Multienzymatic Stereoselective Cascade Process in the Synthesis of 2-Methyl-3-Substituted Tetrahydrofuran Precursors. Journal of Organic Chemistry, 2017, 82, 2114-2122.	3.2	26
22	Asymmetric Bioreduction of βâ€Acylaminonitroalkenes: Easy Access to Chiral Building Blocks with Two Vicinal Nitrogen ontaining Functional Groups. ChemCatChem, 2017, 9, 2480-2487.	3.7	14
23	Substituent and catalyst effects on GAC lactonization of γ-hydroxy esters. Catalysis Science and Technology, 2017, 7, 1497-1507.	4.1	13
24	Biocatalytic synthesis of chiral cyclic γ-oxoesters by sequential C–H hydroxylation, alcohol oxidation and alkene reduction. Green Chemistry, 2017, 19, 5122-5130.	9.0	22
25	Old Yellow Enzyme homologues in Mucor circinelloides: expression profile and biotransformation. Scientific Reports, 2017, 7, 12093.	3.3	8
26	Peroxygenase atalyzed Enantioselective Sulfoxidations. European Journal of Organic Chemistry, 2017, 2017, 7186-7189.	2.4	29
27	One-Pot Multi-Enzymatic Synthesis of the Four Stereoisomers of 4-Methylheptan-3-ol. Molecules, 2017, 22, 1591.	3.8	12
28	Substrate Scope Evaluation of the Enantioselective Reduction of βâ€Alkylâ€Î²â€arylnitroalkenes by Old Yellow Enzymes 1–3 for Organic Synthesis Applications. ChemCatChem, 2016, 8, 577-583.	3.7	16
29	Lipase mediated resolution of cis- and trans-linalool oxide (pyranoid). Journal of Molecular Catalysis B: Enzymatic, 2016, 133, S420-S425.	1.8	8
30	Synthesis of Enantiomerically Enriched 2â€Hydroxymethylalkanoic Acids by Oxidative Desymmetrisation of Achiral 1,3â€Diols Mediated by <i>Acetobacter aceti</i> . ChemCatChem, 2016, 8, 3796-3803.	3.7	8
31	A competitive approach for the reduction of unsaturated compounds based on fungal ene-reductases. Mycosphere, 2016, 7, 1588-1599.	6.1	4
32	Cascade Coupling of Eneâ€Reductases and ï‰â€Transaminases for the Stereoselective Synthesis of Diastereomerically Enriched Amines. ChemCatChem, 2015, 7, 3106-3109.	3.7	34
33	A Rapid and Highâ€Throughput Assay for the Estimation of Conversions of Eneâ€Reductaseâ€Catalysed Reactions. ChemBioChem, 2015, 16, 1571-1573.	2.6	7
34	Opposite Enantioselectivity in the Bioreduction of (<i>Z</i>)â€Î²â€Arylâ€Î²â€cyanoacrylates Mediated by the Tryptophan 116 Mutants of Old Yellow Enzyme 1: Synthetic Approach to (<i>R</i>)â€and (<i>S</i>)â€Î²â€Arylâ€Î³â€lactams. Advanced Synthesis and Catalysis, 2015, 357, 1849-1860.	4.3	51
35	Multi-Enzymatic Cascade Procedures for the Synthesis of Chiral Odorous Molecules. ACS Symposium Series, 2015, , 59-75.	0.5	6
36	Substrate-engineering approach to the stereoselective chemo-multienzymatic cascade synthesis of Nicotiana tabacum lactone. Journal of Molecular Catalysis B: Enzymatic, 2015, 114, 77-85.	1.8	28

#	Article	IF	CITATIONS
37	Identification of fungal ene-reductase activity by means of a functional screening. Fungal Biology, 2015, 119, 487-493.	2.5	12
38	Investigation of the stereochemical course of ene reductase-catalysed reactions by deuterium labelling. Isotopes in Environmental and Health Studies, 2015, 51, 24-32.	1.0	6
39	Biocatalysed reduction of carboxylic acids to primary alcohols in aqueous medium: A novel synthetic capability of the zygomycete fungus Syncephalastrum racemosum. Journal of Molecular Catalysis B: Enzymatic, 2015, 116, 83-88.	1.8	10
40	Multi-enzyme cascade synthesis of the most odorous stereoisomers of the commercial odorant Muguesia®. Journal of Molecular Catalysis B: Enzymatic, 2015, 114, 37-41.	1.8	21
41	Enantioselective Synthesis of (<i>R</i>)â€2â€Arylpropanenitriles Catalysed by Eneâ€Reductases in Aqueous Media and in Biphasic Ionic Liquid–Water Systems. ChemCatChem, 2014, 6, 2425-2431.	3.7	20
42	Rationalisation of the stereochemical outcome of ene-reductase-mediated bioreduction of α,β-difunctionalised alkenes. Journal of Molecular Catalysis B: Enzymatic, 2014, 101, 67-72.	1.8	15
43	Substrate scope and synthetic applications of the enantioselective reduction of α-alkyl-β-arylenones mediated by Old Yellow Enzymes. Organic and Biomolecular Chemistry, 2013, 11, 2988.	2.8	33
44	Synthesis of Robalzotan, Ebalzotan, and Rotigotine Precursors via the Stereoselective Multienzymatic Cascade Reduction of α,β-Unsaturated Aldehydes. Journal of Organic Chemistry, 2013, 78, 4811-4822.	3.2	47
45	Old Yellow Enzyme-mediated reduction of î²-cyano-î±,î²-unsaturated esters for the synthesis of chiral building blocks: stereochemical analysis of the reaction. Catalysis Science and Technology, 2013, 3, 1136.	4.1	39
46	Productivity enhancement of $Ci \in C$ bioreductions by coupling the in situ substrate feeding product removal technology with isolated enzymes. Chemical Communications, 2012, 48, 79-81.	4.1	37
47	Enoate Reductase-Mediated Preparation of Methyl (S)-2-Bromobutanoate, a Useful Key Intermediate for the Synthesis of Chiral Active Pharmaceutical Ingredients. Organic Process Research and Development, 2012, 16, 262-268.	2.7	53
48	Biotechnological Development of a Practical Synthesis of Ethyl (S)-2-Ethoxy-3-(p-methoxyphenyl)propanoate (EEHP): Over 100-Fold Productivity Increase from Yeast Whole Cells to Recombinant Isolated Enzymes. Organic Process Research and Development, 2012, 16, 269-276.	2.7	71
49	On the stereochemistry of the Baker's Yeast-mediated reduction of regioisomeric unsaturated aldehydes: Examples of enantioselectivity switch promoted by substrate-engineering. Journal of Molecular Catalysis B: Enzymatic, 2012, 84, 94-101.	1.8	16
50	Steric Effects on the Stereochemistry of Old Yellow Enzymeâ€Mediated Reductions of Unsaturated Diesters: Flipping of the Substrate within the Enzyme Active Site Induced by Structural Modifications. Advanced Synthesis and Catalysis, 2012, 354, 2859-2864.	4.3	26
51	Cascade Coupling of Ene Reductases with Alcohol Dehydrogenases: Enantioselective Reduction of Prochiral Unsaturated Aldehydes. ChemCatChem, 2012, 4, 653-659.	3.7	52
52	Stereochemical Outcome of the Biocatalysed Reduction of Activated Tetrasubstituted Olefins by Old Yellow Enzymes 1–3. Advanced Synthesis and Catalysis, 2012, 354, 105-112.	4.3	34
53	Biocatalytic Methods for the Synthesis of Enantioenriched Odor Active Compounds. Chemical Reviews, 2011, 111, 4036-4072.	47.7	78
54	Enantioselective CC bond reduction of unsaturated α-chloro esters by old yellow enzymes. Journal of Molecular Catalysis B: Enzymatic, 2011, , .	1.8	2

#	Article	IF	CITATIONS
55	Biocatalyzed Enantioselective Reduction of Activated C=C Bonds: Synthesis of Enantiomerically Enriched αâ€Haloâ€Î²â€arylpropionic Acids. European Journal of Organic Chemistry, 2011, 2011, 4015-4022.	2.4	35
56	Recent Advances in the Synthesis of Fragrances. Current Organic Chemistry, 2011, 15, 987-1005.	1.6	5
57	Baker's Yeast Reduction of βâ€Hydroxy Ketones. European Journal of Organic Chemistry, 2010, 2010, 142-151.	2.4	26
58	Stereochemical Analysis of the Enzymic Reduction of the Double Bond of α―and βâ€6ubstituted Nitrostyrenes and αâ€Ethoxycinnamaldehyde through Deuterium Labelling Experiments. European Journal of Organic Chemistry, 2010, 2010, 5077-5084.	2.4	16
59	Oxygenated Stereotriads with Definite Absolute Configuration by Lipase-Mediated Kinetic Resolution: De Novo Synthesis of Imino Sugars and 6-Deoxy-C-glycosides. European Journal of Organic Chemistry, 2010, 2010, n/a-n/a.	2.4	1
60	Intermittent simulated moving bed chromatographic separation of (RS,RS)-2-(2,4-difluorophenyl)butane-1,2,3-triol. Journal of Chromatography A, 2010, 1217, 2840-2846.	3.7	12
61	Lipase-catalysed synthesis of homotartaric acid enantiomers. Tetrahedron Letters, 2009, 50, 2249-2251.	1.4	6
62	Enzyme-catalysed approach to the preparation of triazole antifungals: synthesis of (â^')-genaconazole. Tetrahedron: Asymmetry, 2009, 20, 2413-2420.	1.8	26
63	Enzyme-mediated synthesis of EEHP and EMHP, useful pharmaceutical intermediates of PPAR agonists. Tetrahedron: Asymmetry, 2009, 20, 2594-2599.	1.8	13
64	New stereospecific synthesis of Tesaglitazar and Navaglitazar precursors. Tetrahedron: Asymmetry, 2009, 20, 2694-2698.	1.8	22
65	Biotechnological Tools to Produce Natural Flavors and Methods to Authenticate Their Origin. Contemporary Food Engineering, 2009, , 81-106.	0.2	4
66	Synthesis of <scp>L</scp> â€and <scp>D</scp> â€4,6â€Dideoxyhexoses and 4,6â€Dideoxyâ€ <i>C</i> â€phenylglycosides from Enzymeâ€Generated Products. European Journal of Organic Chemistry, 2008, 2008, 5125-5134.	2.4	6
67	Impurities of tazarotene: Isolation and structural characterisation. Journal of Pharmaceutical and Biomedical Analysis, 2008, 46, 574-576.	2.8	7
68	Synthesis and olfactory evaluation of all stereoisomers of the fragrance Nectaryl®. Tetrahedron: Asymmetry, 2008, 19, 800-807.	1.8	9
69	Synthesis, olfactory evaluation and determination of the absolute configuration of the β- and γ-Iralia® isomers. Tetrahedron: Asymmetry, 2008, 19, 2316-2322.	1.8	12
70	Monitoring the synthetic procedures of commercial drugs by 2H NMR spectroscopy: The case of ibuprofen and naproxen. Talanta, 2008, 76, 651-655.	5.5	15
71	Applications of biocatalysis in fragrance chemistry: the enantiomers of α-, β-, and γ-irones. Chemical Society Reviews, 2008, 37, 2443.	38.1	23
72	Recent Advances in the Benzannulation of Substituted 3â€Alkoxycarbonylâ€3,5â€hexadienoic Acids and 3â€Alkoxycarbonylhexâ€3â€enâ€5â€ynoic Acids to Polysubstituted Aromatics. Chemistry - A European Journal, 2007, 13, 6782-6791.	3.3	50

#	Article	IF	CITATIONS
73	Two easy photochemical methods for the conversion of commercial ionone alpha into regioisomerically enriched <i>γâ€</i> ionone and <i>γâ€</i> dihydroionone. Flavour and Fragrance Journal, 2007, 22, 505-511.	2.6	7
74	New synthetic approach to atypical retinoids: application of a versatile annulation procedure. Tetrahedron, 2007, 63, 2351-2356.	1.9	4
75	Traceability of synthetic drugs by position-specific deuterium isotope ratio analysis. Analytica Chimica Acta, 2007, 601, 234-239.	5.4	10
76	Isolation and characterisation of impurities in adapalene. Journal of Pharmaceutical and Biomedical Analysis, 2007, 43, 1161-1163.	2.8	4
77	A new enzymatic approach to (R)-Tamsulosin hydrochloride. Tetrahedron: Asymmetry, 2007, 18, 488-492.	1.8	17
78	The enantiomers of Iralia $\hat{A}^{\textcircled{e}}$: preparation and odour evaluation. Tetrahedron: Asymmetry, 2007, 18, 1145-1153.	1.8	15
79	Isolation and characterisation of a phenolic impurity in a commercial sample of duloxetine. Journal of Pharmaceutical and Biomedical Analysis, 2007, 43, 1573-1575.	2.8	18
80	Determination of the Synthetic Origin of Methamphetamine Samples by 2H NMR Spectroscopy. Analytical Chemistry, 2006, 78, 3113-3117.	6.5	27
81	Enzymatic Approach to Enantiomerically Pure 5-Alken-2,4-diols and 4-Hydroxy-5-alken-2-ones: Application to the Synthesis of Chiral Synthons. Journal of Organic Chemistry, 2006, 71, 5228-5240.	3.2	17
82	Enzyme-mediated preparation of enantioenriched forms of trans- and cis-p-menthan-1,8-dien-5-ol. Tetrahedron: Asymmetry, 2006, 17, 792-796.	1.8	6
83	Enzyme-Mediated Preparation of the Enantiomerically Enriched Isomers of the Odorous Tetrahydropyranyl AcetatesJasmal® andJessemal®, and Their Olfactory Evaluation. Chemistry and Biodiversity, 2006, 3, 677-694.	2.1	9
84	Enzymatic Approach to and Odor Description of the Twelve Enantiomerically Pure Isomers ofPelargeneA®. Helvetica Chimica Acta, 2006, 89, 177-189.	1.6	13
85	Synthesis, Olfactory Evaluation, and Determination of the Absolute Configuration of the 3,4-Didehydroionone Stereoisomers. Helvetica Chimica Acta, 2006, 89, 1110-1122.	1.6	40
86	Biocatalytic preparation of natural flavours and fragrances. Trends in Biotechnology, 2005, 23, 193-198.	9.3	289
87	Lipase-Catalyzed Preparation of Enantiomerically Enriched Odorants. ChemInform, 2005, 36, no.	0.0	0
88	Odor and (Bio)diversity: Single Enantiomers of Chiral Fragrant Substances. ChemInform, 2005, 36, no.	0.0	0
89	Impurity analysis of retinoic acid samples. Bioorganic and Medicinal Chemistry Letters, 2005, 15, 3528-3531.	2.2	1
90	Synthesis and olfactory evaluation of the enantiomerically enriched forms of 7,11-epoxymegastigma-5(6)-en-9-one and 7,11-epoxymegastigma-5(6)-en-9-ols isomers, identified in Passiflora edulis. Tetrahedron: Asymmetry, 2005, 16, 1699-1704.	1.8	21

#	Article	IF	CITATIONS
91	Bio-catalysed synthesis of optically active Undecavertol® enantiomers. Tetrahedron: Asymmetry, 2005, 16, 1997-1999.	1.8	5
92	Synthesis of Isoaminile Mediated by Enzymes. Synthesis, 2005, 2005, 1148-1156.	2.3	4
93	Stable Isotope Characterization of theortho-Oxygenated Phenylpropanoids:Â Coumarin and Melilotol. Journal of Agricultural and Food Chemistry, 2005, 53, 9383-9388.	5.2	18
94	Chirality and Fragrance Chemistry:Â Stereoisomers of the Commercial Chiral Odorants Muguesia and Pamplefleur. Journal of Organic Chemistry, 2005, 70, 1281-1290.	3.2	63
95	Lipase-catalysed preparation of enantiomerically enriched odorants. Journal of Molecular Catalysis B: Enzymatic, 2004, 32, 33-51.	1.8	44
96	Enzyme-mediated synthesis of new 1,3-dioxane odorants related to Floropal®. Flavour and Fragrance Journal, 2004, 19, 382-393.	2.6	7
97	Preparation of the Enantiomerically Enriched Isomers of the Odorous Cyclic EthersClarycet ®,Florol ®, andRhubafuran ® by Enzymatic Catalysis. Helvetica Chimica Acta, 20 765-780.	04 ,.8 7,	33
98	From Commercial Racemic Fragrances to Odor-Active Enantiopure Compounds: The Ten Isomers of Irone. ChemInform, 2004, 35, no.	0.0	0
99	Enzyme-Mediated Syntheses of Chiral Communication Substances: Fragrances for Perfumery Applications. ChemInform, 2004, 35, no.	0.0	0
100	Enantioselective synthesis of cis-7-methoxy-calamenene via Claisen rearrangement of an enzymatically resolved allyl alcohol. Tetrahedron: Asymmetry, 2004, 15, 335-340.	1.8	26
101	Establishing the synthetic origin of amphetamines by 2H NMR spectroscopy. Analyst, The, 2004, 129, 130.	3.5	7
102	Changing the Odor Properties of Commercial Mixtures of α-Irones by Simple Chemical Transformations. Journal of Essential Oil Research, 2004, 16, 339-341.	2.7	4
103	Differentiation of Extractive and Synthetic Salicin. The2H Aromatic Pattern of Natural 2-Hydroxybenzyl Alcohol. Journal of Agricultural and Food Chemistry, 2004, 52, 7747-7751.	5.2	7
104	Differentiation of Natural and Synthetic Phenylalanine and Tyrosine through Natural Abundance2H Nuclear Magnetic Resonance. Journal of Agricultural and Food Chemistry, 2003, 51, 4866-4872.	5.2	8
105	Enzyme-Mediated Preparation of Chiral 1,3-Dioxane Odorants. Helvetica Chimica Acta, 2003, 86, 592-606.	1.6	14
106	Enantioselective Perception of Chiral Odorants. ChemInform, 2003, 34, no.	0.0	0
107	Lipase-catalyzed resolution of p-menthan-3-ols monoterpenes: preparation of the enantiomer-enriched forms of menthol, isopulegol, trans- and cis-piperitol, and cis-isopiperitenol. Tetrahedron: Asymmetry, 2003, 14, 3313-3319.	1.8	55
108	Traceless solid-phase synthesis of 2,4,6-chlorodiamino and triaminopyrimidines. Tetrahedron, 2003, 59, 7147-7156.	1.9	14

#	Article	IF	CITATIONS
109	Enantioselective perception of chiral odorants. Tetrahedron: Asymmetry, 2003, 14, 1-42.	1.8	292
110	Enantioselective synthesis of benzylic stereocentres via Claisen rearrangement of enantiomerically pure allylic alcohols: preparation of (R)- and (S)-3-methyl-2-phenylbutylamine. Tetrahedron: Asymmetry, 2003, 14, 2401-2406.	1.8	21
111	From commercial racemic fragrances to odour active enantiopure compounds: the ten isomers of irone. Comptes Rendus Chimie, 2003, 6, 529-546.	0.5	27
112	Enzyme-Mediated Syntheses of Chiral Communication Substances: Fragrances for Perfumery Applications. Current Organic Chemistry, 2003, 7, 1347-1367.	1.6	8
113	Biocatalyzed preparation of the optically enriched stereoisomers of 4-methyl-2-phenyl-tetrahydro-2H-pyran (Doremox®). Canadian Journal of Chemistry, 2002, 80, 714-723.	1.1	20
114	A Novel General Route for the Synthesis of C-Glycosyl Tyrosine Analogues. Chemistry - A European Journal, 2002, 8, 1872.	3.3	35
115	Optically Active Ionones and Derivatives: Preparation and Olfactory Properties. European Journal of Organic Chemistry, 2002, 2002, 967-978.	2.4	85
116	Biocatalysed synthesis of the enantiomers of the floral odorant Florhydral®. Tetrahedron: Asymmetry, 2002, 13, 899-904.	1.8	44
117	Baker's yeast-mediated approach to (â^')-cis- and (+)-trans-Aerangis lactones. Tetrahedron: Asymmetry, 2001, 12, 1871-1879.	1.8	44
118	Enzyme-Mediated Synthesis of (S)- and (R)-Verapamil. European Journal of Organic Chemistry, 2001, 2001, 1349-1357.	2.4	34
119	Enzyme-Mediated Preparation of (+)- and (â^')-β-Irone and (+)- and (â^')-cis-γ-Irone fromIrone alpha®. Helvetica Chimica Acta, 2001, 84, 69-86.	1.6	14
120	Enzyme-Mediated Syntheses of the Enantiomers of \hat{I}^3 -Irones. Helvetica Chimica Acta, 2001, 84, 3650-3666.	1.6	23
121	Acetylation of Racemiccis- andtrans-α-Irols, Mediated byPorcine Pancreatic Lipase (PPL) â^' A New Route to (â~') and (+)-cis-α-Irone. European Journal of Organic Chemistry, 2000, 2000, 3031-3038.	2.4	7
122	Steric and Electronic Effects in Methyl-Substituted 2,2â€~-Bipyrroles and Poly(2,2â€~-Bipyrrole)s: Part II. Theoretical Investigation on Monomers. Chemistry of Materials, 2000, 12, 1490-1499.	6.7	31
123	Steric and Electronic Effects in Methyl-Substituted 2,2â€~-Bipyrroles and Poly(2,2â€~-Bipyrrole)s: Part I. Synthesis and Characterization of Monomers and Polymers. Chemistry of Materials, 2000, 12, 1480-1489.	6.7	42
124	Enzyme-Mediated Preparation of the Single Enantiomers of the Olfactory Active Components of the Woody OdorantTimberol®. Helvetica Chimica Acta, 1999, 82, 1762-1773.	1.6	13
125	Enzyme-Mediated Preparation of (+)- and (-)-cis-α-Irone and (+)- and (-)-trans-α-Irone. Helvetica Chimica Acta, 1999, 82, 2246-2259.	1.6	14
126	Lipase-mediated synthesis of the enantiomeric forms of 4,5-epoxy-4,5-dihydro-α-ionone and 5,6-epoxy-5,6-dihydro-β-ionone. A new direct access to enantiopure (R)- and (S )-α-ionone. Journal of the Chemical Society Perkin Transactions 1, 1999, , 271-278.	0.9	27

ELISABETTA BRENNA

#	Article	IF	CITATIONS
127	A new two step route to 1-hydroxy-9H-3-carbazolecarboxylic acid derivatives from 3-formylindole. Application to the synthesis of mukonine. Tetrahedron, 1998, 54, 1585-1588.	1.9	31
128	Enzyme-mediated synthesis of (R)- and (S )-α-ionone. Journal of the Chemical Society Perkin Transactions 1, 1998, , 4129-4134.	0.9	24
129	Synthesis of 2,3-Dihydro-6-methylthieno[2,3-c]furan (Kahweofuran), a Coffee Aroma Component, from an Acyclic Precursor. Journal of Chemical Research Synopses, 1998, , 74-75.	0.3	4
130	New route to o-terphenyls: application to the synthesis of 6,7,10,11-tetramethoxy-2-(methoxycarbonyl)triphenylene. Journal of the Chemical Society Perkin Transactions 1, 1998, , 901-904.	0.9	15
131	Highly Ordered Poly(cyclopentabithiophenes) Functionalized with Crown-Ether Moieties for Lithium- and Sodium-Sensing Electrodes. Chemistry of Materials, 1998, 10, 2167-2176.	6.7	53
132	Aromatic Annulation of Alicyclic α,β-Unsaturated Aldehydes: Synthesis of Chirally Substituted Tetrahydronaphthalenes. Synlett, 1998, 1998, 365-366.	1.8	8
133	On a baker's yeast-mediated approach to verapamil's optically active intermediates. Tetrahedron, 1997, 53, 10555-10564.	1.9	1
134	New enzymatic and chemical approaches to enantiopure etodolac. Tetrahedron, 1997, 53, 17769-17780.	1.9	17
135	Enantioselective synthesis of β-substituted butyric acid derivatives via orthoester Claisen rearrangement of enzymatically resolved allylic alcohols: application to the synthesis of (R)-(â°')-baclofen. Tetrahedron: Asymmetry, 1997, 8, 3801-3805.	1.8	53
136	Recent progress on the iterative construction of 4-substituted-3-hydroxy benzoic acids from unsaturated aldehydes and dimethyl succinate. Tetrahedron, 1997, 53, 15029-15040.	1.9	17
137	Chiral atropisomeric five-membered biheteroaromatic diphosphines: New ligands of the bibenzimidazole and biindole series. Journal of Organometallic Chemistry, 1997, 529, 445-453.	1.8	93
138	New Class of Chiral Diphosphine Ligands for Highly Efficient Transition Metal-Catalyzed Stereoselective Reactions:  The Bis(diphenylphosphino) Five-membered Biheteroaryls. Journal of Organic Chemistry, 1996, 61, 6244-6251.	3.2	172
139	Stereoelectronic effects in polythiophenes: poly(3-cyclopropylthiophene) and poly (3-cyclobutylthiophene). Synthetic Metals, 1996, 83, 57-59.	3.9	0
140	Phase diagrams of perhydrotriphenylene and aromatic compounds. Journal of Theoretical Biology, 1996, 47, 273-280.	1.7	3
141	Conformational effects on electrical and spectroscopic properties of 1,2-di(2-thienyl)ethylenes and corresponding poly[(2,2′-dithienyl)-5,5′-diylvinylenes]. Macromolecular Chemistry and Physics, 1996, 197, 517-528.	2.2	5
142	The First"Charm Bracelet―Conjugated Polymer: An Electroconducting Polythiophene with Covalently Bound Fullerene Moieties. Angewandte Chemie International Edition in English, 1996, 35, 648-651.	4.4	128
143	Anion Assisted Anodic Coupling of 2,2'-Bipyrrole. Role of Tosylate Anion in the Electrochemical Synthesis of Polypyrrole. Chemistry of Materials, 1995, 7, 1464-1468.	6.7	40
144	Conformational effects on electrical and spectroscopic properties of bi-, ter-, and poly-thiophenes. Journal of the Chemical Society Chemical Communications, 1995, , 881.	2.0	21

#	Article	IF	CITATIONS
145	(Diphenylphosphino)-biheteroaryls: the first example of a new class of chiral atropisomeric chelating diphosphine ligands for transition metal catalysed stereoselective reactions. Journal of the Chemical Society Chemical Communications, 1995, , 685-686.	2.0	46
146	Studies on Wallach's imidazole synthesis. Journal of the Chemical Society Perkin Transactions 1, 1993, , 675.	0.9	39
147	Stereoelectronic Effects in Polythiophenes. Molecular Crystals and Liquid Crystals, 1993, 236, 181-188.	0.3	10
148	Intramolecular delocalization of Î electrons in polythiophenes with fixed conformation: A spectroscopic study. Journal of Chemical Physics, 1993, 98, 4531-4542.	3.0	26
149	Synthesis of Heterocyclic Monomers Designed to Produce Conducting Polymer with Specific Redox Requisites and to Evaluate Stereochemical Factors Influencing the Conductivity. Materials Research Society Symposia Proceedings, 1992, 247, 619.	0.1	0
150	Fusion of heterocyclic polymerogenic units onto a central ring: a fruitful approach to the investigation and specific tailoring of the dependence of electrical properties on monomer structure in conductive polyheterocycles. Synthetic Metals, 1992, 51, 287-297.	3.9	20
151	Studies on the Fischer indole synthesis: rearrangements of five-, six- and seven-membered cyclic hydrazones of pyrazoline, tetrahydropyridazine and tetrahydro-1,2-diazepine series in polyphosphoric acid. Journal of the Chemical Society Perkin Transactions 1, 1991, , 2139-2145.	0.9	13
152	Selectivity in the thiocyanation of 3-alkylindoles: an unexpectedly easy access to 2-isothiocyano derivatives. Tetrahedron Letters, 1990, 31, 7229-7232.	1.4	11