
Daniel F Klessig

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3025199/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Salicylic Acid, a Multifaceted Hormone to Combat Disease. Annual Review of Phytopathology, 2009, 47, 177-206.	7.8	1,995
2	Methyl Salicylate Is a Critical Mobile Signal for Plant Systemic Acquired Resistance. Science, 2007, 318, 113-116.	12.6	831
3	MAPK cascades in plant defense signaling. Trends in Plant Science, 2001, 6, 520-527.	8.8	676
4	Salicylic Acid Biosynthesis and Metabolism. The Arabidopsis Book, 2011, 9, e0156.	0.5	597
5	Nitric oxide: comparative synthesis and signaling in animal and plant cells. Trends in Plant Science, 2001, 6, 177-183.	8.8	528
6	Characterization of a Salicylic Acid-Insensitive Mutant (sai1) of Arabidopsis thaliana, Identified in a Selective Screen Utilizing the SA-Inducible Expression of the tms2 Gene. Molecular Plant-Microbe Interactions, 1997, 10, 69-78.	2.6	493
7	Nitric oxide: a new player in plant signalling and defence responses. Current Opinion in Plant Biology, 2004, 7, 449-455.	7.1	475
8	Rapid Avr9- and Cf-9–Dependent Activation of MAP Kinases in Tobacco Cell Cultures and Leaves: Convergence of Resistance Gene, Elicitor, Wound, and Salicylate Responses. Plant Cell, 1999, 11, 273-287.	6.6	458
9	NPR1 Differentially Interacts with Members of the TGA/OBF Family of Transcription Factors That Bind an Element of the PR-1 Gene Required for Induction by Salicylic Acid. Molecular Plant-Microbe Interactions, 2000, 13, 191-202.	2.6	448
10	Salicylic Acid and Disease Resistance in Plants. Critical Reviews in Plant Sciences, 1999, 18, 547-575.	5.7	446
11	Systemic Acquired Resistance and Salicylic Acid: Past, Present, and Future. Molecular Plant-Microbe Interactions, 2018, 31, 871-888.	2.6	350
12	The tobacco salicylic acid-binding protein 3 (SABP3) is the chloroplast carbonic anhydrase, which exhibits antioxidant activity and plays a role in the hypersensitive defense response. Proceedings of the National Academy of Sciences of the United States of America, 2002, 99, 11640-11645.	7.1	343
13	Nitric Oxide Inhibition of Tobacco Catalase and Ascorbate Peroxidase. Molecular Plant-Microbe Interactions, 2000, 13, 1380-1384.	2.6	335
14	Members of the Arabidopsis HRT/RPP8 Family of Resistance Genes Confer Resistance to Both Viral and Oomycete Pathogens. Plant Cell, 2000, 12, 663-676.	6.6	330
15	NO synthesis and signaling in plants – where do we stand?. Physiologia Plantarum, 2010, 138, 372-383.	5.2	297
16	SOS – too many signals for systemic acquired resistance?. Trends in Plant Science, 2012, 17, 538-545.	8.8	292
17	A Gain-of-Function Mutation in an Arabidopsis Toll Interleukin1 Receptor–Nucleotide Binding Site–Leucine-Rich Repeat Type R Gene Triggers Defense Responses and Results in Enhanced Disease Resistance. Plant Cell, 2002, 14, 3149-3162.	6.6	281
18	Structural and biochemical studies identify tobacco SABP2 as a methyl salicylate esterase and implicate it in plant innate immunity. Proceedings of the National Academy of Sciences of the United States of America, 2005, 102, 1773-1778.	7.1	275

#	Article	IF	CITATIONS
19	Systemic acquired resistance: the elusive signal(s). Current Opinion in Plant Biology, 2008, 11, 436-442.	7.1	271
20	High-affinity salicylic acid-binding protein 2 is required for plant innate immunity and has salicylic acid-stimulated lipase activity. Proceedings of the National Academy of Sciences of the United States of America, 2003, 100, 16101-16106.	7.1	268
21	The Arabidopsis ssi1 Mutation Restores Pathogenesis-Related Gene Expression in npr1 Plants and Renders Defensin Gene Expression Salicylic Acid Dependent. Plant Cell, 1999, 11, 191-206.	6.6	267
22	Uncoupling PR Gene Expression from NPR1 and Bacterial Resistance: Characterization of the Dominant Arabidopsis cpr6-1 Mutant. Plant Cell, 1998, 10, 557-569.	6.6	266
23	AtNOS/AtNOA1 Is a Functional Arabidopsis thaliana cGTPase and Not a Nitric-oxide Synthase. Journal of Biological Chemistry, 2008, 283, 32957-32967.	3.4	266
24	Activation of the Tobacco SIP Kinase by Both a Cell Wall–Derived Carbohydrate Elicitor and Purified Proteinaceous Elicitins from Phytophthora spp. Plant Cell, 1998, 10, 435-449.	6.6	257
25	Resistance to Turnip Crinkle Virus in Arabidopsis Is Regulated by Two Host Genes and Is Salicylic Acid Dependent but NPR1, Ethylene, and Jasmonate Independent. Plant Cell, 2000, 12, 677-690.	6.6	254
26	Overexpression of Pto Activates Defense Responses and Confers Broad Resistance. Plant Cell, 1999, 11, 15-29.	6.6	252
27	DAMPs, MAMPs, and NAMPs in plant innate immunity. BMC Plant Biology, 2016, 16, 232.	3.6	251
28	Identification of likely orthologs of tobacco salicylic acidâ€binding protein 2 and their role in systemic acquired resistance in <i>Arabidopsis thaliana</i> . Plant Journal, 2008, 56, 445-456.	5.7	215
29	Salicylic acid and plant disease resistance. Plant Journal, 1992, 2, 643-654.	5.7	213
30	A Harpin Binding Site in Tobacco Plasma Membranes Mediates Activation of the Pathogenesis-Related Gene HIN1 Independent of Extracellular Calcium but Dependent on Mitogen-Activated Protein Kinase Activity. Plant Cell, 2001, 13, 1079-1093.	6.6	213
31	Silencing of the Mitogen-Activated Protein Kinase MPK6 Compromises Disease Resistance in Arabidopsis. Plant Cell, 2004, 16, 897-907.	6.6	211
32	Nitric Oxide Modulates the Activity of Tobacco Aconitase. Plant Physiology, 2000, 122, 573-582.	4.8	207
33	The Chimeric Arabidopsis CYCLIC NUCLEOTIDE-GATED ION CHANNEL11/12 Activates Multiple Pathogen Resistance Responses. Plant Cell, 2006, 18, 747-763.	6.6	201
34	Conserved nematode signalling molecules elicit plant defenses and pathogen resistance. Nature Communications, 2015, 6, 7795.	12.8	196
35	A recessive mutation in the Arabidopsis SSI2 gene confers SA- and NPR1-independent expression of PR genes and resistance against bacterial and oomycete pathogens. Plant Journal, 2001, 25, 563-574.	5.7	193
36	Probenazole induces systemic acquired resistance in Arabidopsis with a novel type of action. Plant Journal, 2001, 25, 149-157.	5.7	178

#	Article	IF	CITATIONS
37	How does the multifaceted plant hormone salicylic acid combat disease in plants and are similar mechanisms utilized in humans?. BMC Biology, 2017, 15, 23.	3.8	171
38	The Pathogen-Inducible Nitric Oxide Synthase (iNOS) in Plants Is a Variant of the P Protein of the Glycine Decarboxylase Complex. Cell, 2003, 113, 469-482.	28.9	159
39	Tobacco Transcription Factor WRKY1 Is Phosphorylated by the MAP Kinase SIPK and Mediates HR-Like Cell Death in Tobacco. Molecular Plant-Microbe Interactions, 2005, 18, 1027-1034.	2.6	157
40	Inactive Methyl Indole-3-Acetic Acid Ester Can Be Hydrolyzed and Activated by Several Esterases Belonging to the <i>At</i> MES Esterase Family of Arabidopsis Â. Plant Physiology, 2008, 147, 1034-1045.	4.8	152
41	Multiple levels of tobacco WIPK activation during the induction of cell death by fungal elicitins. Plant Journal, 2000, 23, 339-347.	5.7	149
42	Aconitase plays a role in regulating resistance to oxidative stress and cell death in Arabidopsis and Nicotiana benthamiana. Plant Molecular Biology, 2007, 63, 273-287.	3.9	148
43	Environmentally sensitive, SA-dependent defense responses in the cpr22 mutant of Arabidopsis. Plant Journal, 2001, 26, 447-459.	5.7	147
44	Activation of the Tobacco SIP Kinase by Both a Cell Wall-Derived Carbohydrate Elicitor and Purified Proteinaceous Elicitins from Phytophthora spp. Plant Cell, 1998, 10, 435.	6.6	122
45	Identification of multiple salicylic acid-binding proteins using two high throughput screens. Frontiers in Plant Science, 2014, 5, 777.	3.6	119
46	Multiple Targets of Salicylic Acid and Its Derivatives in Plants and Animals. Frontiers in Immunology, 2016, 7, 206.	4.8	118
47	The Lesion-Mimic Mutant <i>cpr22</i> Shows Alterations in Abscisic Acid Signaling and Abscisic Acid Insensitivity in a Salicylic Acid-Dependent Manner. Plant Physiology, 2010, 152, 1901-1913.	4.8	117
48	Benzothiadiazole, an inducer of plant defenses, inhibits catalase and ascorbate peroxidase. Phytochemistry, 1998, 47, 651-657.	2.9	116
49	The Extent to Which Methyl Salicylate Is Required for Signaling Systemic Acquired Resistance Is Dependent on Exposure to Light after Infection. Plant Physiology, 2011, 157, 2216-2226.	4.8	112
50	Abscisic Acid Deficiency Antagonizes High-Temperature Inhibition of Disease Resistance through Enhancing Nuclear Accumulation of Resistance Proteins SNC1 and RPS4 in <i>Arabidopsis</i> . Plant Cell, 2012, 24, 1271-1284.	6.6	104
51	Aspirin's Active Metabolite Salicylic Acid Targets High Mobility Group Box 1 to Modulate Inflammatory Responses. Molecular Medicine, 2015, 21, 526-535.	4.4	97
52	<i>Methyl Esterase 1</i> (<i>StMES1</i>) Is Required for Systemic Acquired Resistance in Potato. Molecular Plant-Microbe Interactions, 2010, 23, 1151-1163.	2.6	88
53	Use of a Synthetic Salicylic Acid Analog to Investigate the Roles of Methyl Salicylate and Its Esterases in Plant Disease Resistance. Journal of Biological Chemistry, 2009, 284, 7307-7317.	3.4	87
54	Interconnection between Methyl Salicylate and Lipid-Based Long-Distance Signaling during the Development of Systemic Acquired Resistance in Arabidopsis and Tobacco Â. Plant Physiology, 2011, 155, 1762-1768.	4.8	86

#	Article	IF	CITATIONS
55	Activation of Plant Innate Immunity by Extracellular High Mobility Group Box 3 and Its Inhibition by Salicylic Acid. PLoS Pathogens, 2016, 12, e1005518.	4.7	82
56	High humidity suppressesssi4-mediated cell death and disease resistance upstream of MAP kinase activation, H2O2production and defense gene expression. Plant Journal, 2004, 39, 920-932.	5.7	78
57	Altering Expression of Benzoic Acid/Salicylic Acid Carboxyl Methyltransferase 1 Compromises Systemic Acquired Resistance and PAMP-Triggered Immunity in Arabidopsis. Molecular Plant-Microbe Interactions, 2010, 23, 82-90.	2.6	77
58	CRT1, an Arabidopsis ATPase that Interacts withÂDiverse Resistance Proteins and Modulates Disease Resistance to Turnip Crinkle Virus. Cell Host and Microbe, 2008, 3, 48-57.	11.0	72
59	Identification of a salicylic acid-responsive element in the promoter of the tobacco pathogenesis-related beta-1,3-glucanase gene, PR-2d. Plant Journal, 1996, 10, 1089-1101.	5.7	71
60	Validation of RNAi silencing specificity using synthetic genes: salicylic acid-binding protein 2 is required for innate immunity in plants. Plant Journal, 2006, 45, 863-868.	5.7	69
61	The combined use of photoaffinity labeling and surface plasmon resonanceâ€based technology identifies multiple salicylic acidâ€binding proteins. Plant Journal, 2012, 72, 1027-1038.	5.7	62
62	The Structure of YqeH. Journal of Biological Chemistry, 2008, 283, 32968-32976.	3.4	57
63	Salicylic acid binding of mitochondrial alphaâ€ketoglutarate dehydrogenase E2 affects mitochondrial oxidative phosphorylation and electron transport chain components and plays a role in basal defense against <i>tobacco mosaic virus</i> in tomato. New Phytologist, 2015, 205, 1296-1307.	7.3	55
64	Members of the abscisic acid coâ€receptor <scp>PP</scp> 2C protein family mediate salicylic acid–abscisic acid crosstalk. Plant Direct, 2017, 1, e00020.	1.9	55
65	Activation of a diverse set of genes during the tobacco resistance response to TMV is independent of salicylic acid; induction of a subset is also ethylene independent. Plant Journal, 2000, 21, 409-418.	5.7	54
66	Plant metabolism of nematode pheromones mediates plant-nematode interactions. Nature Communications, 2020, 11, 208.	12.8	52
67	Salicylic acid-inducible Arabidopsis CK2-like activity phosphorylates TGA2. Plant Molecular Biology, 2005, 57, 541-557.	3.9	49
68	MORC Proteins: Novel Players in Plant and Animal Health. Frontiers in Plant Science, 2017, 8, 1720.	3.6	48
69	Characterization of a tobacco epoxide hydrolase gene induced during the resistance response to TMV. Plant Journal, 1998, 15, 647-656.	5.7	46
70	Salicylic Acid Inhibits the Replication of <i>Tomato bushy stunt virus</i> by Directly Targeting a Host Component in the Replication Complex. Molecular Plant-Microbe Interactions, 2015, 28, 379-386.	2.6	46
71	Non-toxic concentrations of cadmium inhibit systemic movement of turnip vein clearing virus by a salicylic acid-independent mechanism. Plant Journal, 1998, 16, 13-20.	5.7	44
72	Human GAPDH Is a Target of Aspirin's Primary Metabolite Salicylic Acid and Its Derivatives. PLoS ONE, 2015, 10, e0143447.	2.5	44

#	Article	IF	CITATIONS
73	Differential regulation of TGA transcription factors by post-transcriptional control. Plant Journal, 2002, 32, 641-653.	5.7	32
74	The <i>Arabidopsis</i> Gain-of-Function Mutant <i>ssi4</i> Requires <i>RAR1</i> and <i>SGT1b</i> Differentially for Defense Activation and Morphological Alterations. Molecular Plant-Microbe Interactions, 2008, 21, 40-49.	2.6	30
75	Mimicking the Host Regulation of Salicylic Acid: A Virulence Strategy by the Clubroot Pathogen <i>Plasmodiophora brassicae</i> . Molecular Plant-Microbe Interactions, 2019, 32, 296-305.	2.6	27
76	High CO ₂ ―and pathogenâ€driven expression of the carbonic anhydrase βCA3 confers basal immunity in tomato. New Phytologist, 2021, 229, 2827-2843.	7.3	26
77	The search for the salicylic acid receptor led to discovery of the SAR signal receptor. Plant Signaling and Behavior, 2008, 3, 691-692.	2.4	22
78	Plant and Human MORC Proteins Have DNA-Modifying Activities Similar to Type II Topoisomerases, but Require One or More Additional Factors for Full Activity. Molecular Plant-Microbe Interactions, 2017, 30, 87-100.	2.6	22
79	Newly Identified Targets of Aspirin and Its Primary Metabolite, Salicylic Acid. DNA and Cell Biology, 2016, 35, 163-166.	1.9	19
80	Nematode ascaroside enhances resistance in a broad spectrum of plant–pathogen systems. Journal of Phytopathology, 2019, 167, 265-272.	1.0	18
81	A genome-wide screen for human salicylic acid (SA)-binding proteins reveals targets through which SA may influence development of various diseases. Scientific Reports, 2019, 9, 13084.	3.3	16
82	Probenazole induces systemic acquired resistance in <i>Arabidopsis</i> with a novel type of action. Plant Journal, 2001, 25, 149-157.	5.7	11
83	Nematode Signaling Molecules Are Extensively Metabolized by Animals, Plants, and Microorganisms. ACS Chemical Biology, 2021, 16, 1050-1058.	3.4	8