Rajeev Kumar Sukumaran

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3025095/publications.pdf Version: 2024-02-01

		61984	56724
114	7,380	43	83
papers	citations	h-index	g-index
127	127	127	7976
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	Bioethanol production from rice straw: An overview. Bioresource Technology, 2010, 101, 4767-4774.	9.6	742
2	Advancement and comparative profiles in the production technologies using solid-state and submerged fermentation for microbial cellulases. Enzyme and Microbial Technology, 2010, 46, 541-549.	3.2	474
3	Role and significance of beta-glucosidases in the hydrolysis of cellulose for bioethanol production. Bioresource Technology, 2013, 127, 500-507.	9.6	459
4	Cellulase production using biomass feed stock and its application in lignocellulose saccharification for bio-ethanol production. Renewable Energy, 2009, 34, 421-424.	8.9	411
5	Short duration microwave assisted pretreatment enhances the enzymatic saccharification and fermentable sugar yield from sugarcane bagasse. Renewable Energy, 2012, 37, 109-116.	8.9	318
6	Lignocellulosic ethanol in India: Prospects, challenges and feedstock availability. Bioresource Technology, 2010, 101, 4826-4833.	9.6	220
7	Bioflocculation: An alternative strategy for harvesting of microalgae – An overview. Bioresource Technology, 2017, 242, 227-235.	9.6	214
8	Response surface methodology for the optimization of alpha amylase production by Bacillus amyloliquefaciens. Bioresource Technology, 2008, 99, 4597-4602.	9.6	211
9	Dilute acid pretreatment and enzymatic saccharification of sugarcane tops for bioethanol production. Bioresource Technology, 2011, 102, 10915-10921.	9.6	176
10	Strategies for design of improved biocatalysts for industrial applications. Bioresource Technology, 2017, 245, 1304-1313.	9.6	175
11	Crude oil biodegradation aided by biosurfactants from Pseudozyma sp. NII 08165 or its culture broth. Bioresource Technology, 2015, 191, 133-139.	9.6	151
12	Harvesting of microalgal biomass: Efficient method for flocculation through pH modulation. Bioresource Technology, 2016, 213, 216-221.	9.6	131
13	Bio-ethanol from water hyacinth biomass: An evaluation of enzymatic saccharification strategy. Bioresource Technology, 2010, 101, 925-930.	9.6	119
14	Biobutanol production from rice straw by a non acetone producing Clostridium sporogenes BE01. Bioresource Technology, 2013, 145, 182-187.	9.6	115
15	Improved Cellulase Production by Trichoderma reesei RUT C30 under SSF Through Process Optimization. Applied Biochemistry and Biotechnology, 2007, 142, 60-70.	2.9	114
16	Physicochemical characterization of alkali pretreated sugarcane tops and optimization of enzymatic saccharification using response surface methodology. Renewable Energy, 2014, 62, 362-368.	8.9	109
17	Cellulase Production Under Solid-State Fermentation by Trichoderma reesei RUT C30: Statistical Optimization of Process Parameters. Applied Biochemistry and Biotechnology, 2008, 151, 122-131.	2.9	108
18	Effect of dilute acid pretreatment of wild rice grass (Zizania latifolia) from Loktak Lake for enzymatic hydrolysis. Bioresource Technology, 2018, 253, 252-255.	9.6	105

RAJEEV KUMAR SUKUMARAN

#	Article	IF	CITATIONS
19	Cultivation of microalgae in dairy effluent for oil production and removal of organic pollution load. Bioresource Technology, 2014, 165, 295-301.	9.6	103
20	Metagenome Analysis: a Powerful Tool for Enzyme Bioprospecting. Applied Biochemistry and Biotechnology, 2017, 183, 636-651.	2.9	96
21	Optimization of laccase production from a novel strain—Streptomyces psammoticus using response surface methodology. Microbiological Research, 2009, 164, 105-113.	5.3	92
22	Formic Acid as a Potential Pretreatment Agent for the Conversion of Sugarcane Bagasse to Bioethanol. Applied Biochemistry and Biotechnology, 2010, 162, 2313-2323.	2.9	90
23	Cellulase production through solid-state tray fermentation, and its use for bioethanol from sorghum stover. Bioresource Technology, 2017, 242, 265-271.	9.6	90
24	Utilization of rice straw for laccase production by Streptomyces psammoticus in solid-state fermentation. Journal of Industrial Microbiology and Biotechnology, 2007, 34, 665-674.	3.0	89
25	A novel surfactant-assisted ultrasound pretreatment of sugarcane tops for improved enzymatic release of sugars. Bioresource Technology, 2013, 135, 67-72.	9.6	88
26	High temperature pretreatment and hydrolysis of cotton stalk for producing sugars for bioethanol production. Fuel, 2012, 92, 340-345.	6.4	86
27	An evaluation of dilute acid and ammonia fiber explosion pretreatment for cellulosic ethanol production. Bioresource Technology, 2016, 199, 13-20.	9.6	86
28	Lipase from marine Aspergillus awamori BTMFW032: Production, partial purification and application in oil effluent treatment. New Biotechnology, 2011, 28, 627-638.	4.4	84
29	Rapid degradation of the organophosphate pesticide – Chlorpyrifos by a novel strain of Pseudomonas nitroreducens AR-3. Bioresource Technology, 2019, 292, 122025.	9.6	83
30	Studies on structural and physical characteristics of a novel exopolysaccharide from Pseudozyma sp. NII 08165. International Journal of Biological Macromolecules, 2013, 59, 84-89.	7.5	80
31	Prediction of sugar yields during hydrolysis of lignocellulosic biomass using artificial neural network modeling. Bioresource Technology, 2015, 188, 128-135.	9.6	78
32	Organosolvent pretreatment and enzymatic hydrolysis of rice straw for the production of bioethanol. World Journal of Microbiology and Biotechnology, 2012, 28, 473-483.	3.6	77
33	Bioethanol production from dilute acid pretreated Indian bamboo variety (Dendrocalamus sp.) by separate hydrolysis and fermentation. Industrial Crops and Products, 2014, 52, 169-176.	5.2	77
34	Sustainable and eco-friendly strategies for shrimp shell valorization. Environmental Pollution, 2020, 267, 115656.	7.5	70
35	Evaluation of fungal culture filtrate containing chitinase as a biocontrol agent against Helicoverpa armigera. Journal of Applied Microbiology, 2007, 103, 1845-1852.	3.1	69
36	Highly glucose tolerant β-glucosidase from <i>Aspergillus unguis</i> : NII 08123 for enhanced hydrolysis of biomass. Journal of Industrial Microbiology and Biotechnology, 2013, 40, 967-975.	3.0	62

#	Article	IF	CITATIONS
37	Studies on biosurfactants from Pseudozyma sp. NII 08165 and their potential application as laundry detergent additives. Biochemical Engineering Journal, 2013, 78, 85-92.	3.6	62
38	Bioethanol production from bamboo (Dendrocalamus sp.) process waste. Biomass and Bioenergy, 2013, 59, 142-150.	5.7	61
39	Statistical optimization of simultaneous saccharification and l(+)-lactic acid fermentation from cassava bagasse using mixed culture of lactobacilli by response surface methodology. Biochemical Engineering Journal, 2007, 36, 262-267.	3.6	60
40	Energy requirement for alkali assisted microwave and high pressure reactor pretreatments of cotton plant residue and its hydrolysis for fermentable sugar production for biofuel application. Bioresource Technology, 2012, 112, 300-307.	9.6	55
41	Valorization of lignocellulosic residues from the olive oil industry by production of lignin, glucose and functional sugars. Bioresource Technology, 2019, 292, 121936.	9.6	53
42	Properties of a major β-glucosidase-BGL1 from Aspergillus niger NII-08121 expressed differentially in response to carbon sources. Process Biochemistry, 2011, 46, 1521-1524.	3.7	52
43	Addressing challenges in production of cellulases for biomass hydrolysis: Targeted interventions into the genetics of cellulase producing fungi. Bioresource Technology, 2021, 329, 124746.	9.6	51
44	Thermal assisted alkaline pretreatment of rice husk for enhanced biomass deconstruction and enzymatic saccharification: Physico-chemical and structural characterization. Bioresource Technology, 2018, 263, 199-206.	9.6	48
45	Recent developments in l-glutaminase production and applications – An overview. Bioresource Technology, 2017, 245, 1766-1774.	9.6	46
46	Hydrolysis of biomass using a reusable solid carbon acid catalyst and fermentation of the catalytic hydrolysate to ethanol. Bioresource Technology, 2015, 188, 99-102.	9.6	45
47	Production of a highly glucose tolerant β-glucosidase by Paecilomyces variotii MG3: optimization of fermentation conditions using Plackett–Burman and Box–Behnken experimental designs. World Journal of Microbiology and Biotechnology, 2010, 26, 1385-1391.	3.6	37
48	Lignocellulosic Biorefinery Wastes, or Resources?. , 2018, , 267-297.		36
49	Cultivation of the fresh water microalga Chlorococcum sp. RAP13 in sea water for producing oil suitable for biodiesel. Journal of Applied Phycology, 2015, 27, 141-147.	2.8	34
50	Rice straw hydrolysate to fuel and volatile fatty acid conversion by Clostridium sporogenes BE01: bio-electrochemical analysis of the electron transport mediators involved. Green Chemistry, 2015, 17, 3047-3058.	9.0	32
51	Synthetic Biology and Metabolic Engineering Approaches and Its Impact on Non-Conventional Yeast and Biofuel Production. Frontiers in Energy Research, 2017, 5, .	2.3	32
52	Development of a combined pretreatment and hydrolysis strategy of rice straw for the production of bioethanol and biopolymer. Bioresource Technology, 2016, 215, 110-116.	9.6	31
53	A biorefinery-based approach for the production of ethanol from enzymatically hydrolysed cotton stalks. Bioresource Technology, 2017, 242, 178-183.	9.6	30
54	Esterases immobilized on aminosilane modified magnetic nanoparticles as a catalyst for biotransformation reactions. Bioresource Technology, 2014, 167, 547-550.	9.6	29

#	Article	IF	CITATIONS
55	Isolation and characterization of a novel α-amylase from a metagenomic library of Western Ghats of Kerala, India. Biologia (Poland), 2011, 66, 939-944.	1.5	28
56	White Biotechnology in Cosmetics. , 2015, , 607-652.		27
57	Expression system for heterologous protein expression in the filamentous fungus Aspergillus unguis. Bioresource Technology, 2017, 245, 1334-1342.	9.6	27
58	Surfactant-Assisted Acid Pretreatment of Sugarcane Tops for Bioethanol Production. Applied Biochemistry and Biotechnology, 2012, 167, 1513-1526.	2.9	26
59	Detoxification of acidic biorefinery waste liquor for production of high value amino acid. Bioresource Technology, 2016, 213, 270-275.	9.6	25
60	Material balance studies for the conversion of sorghum stover to bioethanol. Biomass and Bioenergy, 2016, 85, 48-52.	5.7	24
61	Potential of Brachiaria mutica (Para grass) for bioethanol production from Loktak Lake. Bioresource Technology, 2017, 242, 133-138.	9.6	24
62	Value-addition of water hyacinth and para grass through pyrolysis and hydrothermal liquefaction. Carbon Resources Conversion, 2019, 2, 233-241.	5.9	23
63	Evaluation of Amberlyst15 for hydrolysis of alkali pretreated rice straw and fermentation to ethanol. Biochemical Engineering Journal, 2015, 102, 49-53.	3.6	22
64	Mild alkaline pretreatment can achieve high hydrolytic and fermentation efficiencies for rice straw conversion to bioethanol. Preparative Biochemistry and Biotechnology, 2020, 50, 814-819.	1.9	22
65	Production of low-calorie structured lipids from spent coffee grounds or olive pomace crude oils catalyzed by immobilized lipase in magnetic nanoparticles. Bioresource Technology, 2020, 307, 123223.	9.6	22
66	Production optimization and properties of beta glucosidases from a marine fungus Aspergillus-SA 58. New Biotechnology, 2010, 27, 347-351.	4.4	21
67	Comparative evaluation of laccase mediated oxidized and unoxidized lignin of sugarcane bagasse for the synthesis of lignin-based formaldehyde resin. Industrial Crops and Products, 2020, 150, 112385.	5.2	21
68	Insights from a Pan India Sero-Epidemiological survey (Phenome-India Cohort) for SARS-CoV2. ELife, 2021, 10, .	6.0	21
69	White Biotechnology in Biosurfactants. , 2015, , 499-521.		20
70	Thermophilic Chitinases: Structural, Functional and Engineering Attributes for Industrial Applications. Applied Biochemistry and Biotechnology, 2021, 193, 142-164.	2.9	19
71	Production of polyhydroxyalkanoates from propylene oxide saponification wastewater residual sludge using volatile fatty acids and bacterial community succession. Bioresource Technology, 2021, 329, 124912.	9.6	19
72	Evaluation of α-galactosidase biosynthesis by Streptomyces griseoloalbus in solid-state fermentation using response surface methodology. Letters in Applied Microbiology, 2008, 46, 338-343.	2.2	18

#	Article	IF	CITATIONS
73	Green remediation of the potential hazardous shellfish wastes generated from the processing industries and their bioprospecting. Environmental Technology and Innovation, 2021, 24, 101979.	6.1	18
74	Promoter and signal sequence from filamentous fungus can drive recombinant protein production in the yeast Kluyveromyces lactis. Bioresource Technology, 2014, 165, 302-308.	9.6	17
75	Simultaneous Saccharification and Fermentation of Pretreated Eucalyptus grandis Under High Solids Loading. Industrial Biotechnology, 2017, 13, 131-140.	0.8	17
76	Esterase Active in Polar Organic Solvents from the Yeast <i>Pseudozyma</i> sp. NII 08165. Enzyme Research, 2014, 2014, 1-10.	1.8	16
77	Bioremediation by Microalgae: Current and Emerging Trends for Effluents Treatments for Value Addition of Waste Streams. Energy, Environment, and Sustainability, 2018, , 355-375.	1.0	16
78	Evaluation of Freshwater Microalgal Isolates for Growth and Oil Production in Seawater Medium. Waste and Biomass Valorization, 2020, 11, 223-230.	3.4	15
79	Co-hydrothermal liquefaction of phumdi and paragrass an aquatic biomass: Characterization of bio-oil, aqueous fraction and solid residue. Journal of the Energy Institute, 2022, 102, 247-255.	5.3	15
80	Co-pyrolysis of phumdi and para grass biomass from Loktak Lake. Bioresource Technology, 2019, 285, 121308.	9.6	14
81	Penicillium janthinellum NCIM1366 shows improved biomass hydrolysis and a larger number of CAZymes with higher induction levels over Trichoderma reesei RUT-C30. Biotechnology for Biofuels, 2020, 13, 196.	6.2	14
82	Butanol Fuel from Biomass. , 2011, , 571-586.		13
83	Molecular cloning and homology modelling of a subtilisin-like serine protease from the marine fungus, Engyodontium album BTMFS10. World Journal of Microbiology and Biotechnology, 2010, 26, 1269-1279.	3.6	12
84	Lipase of <i>Pseudomonas guariconesis</i> as an additive in laundry detergents and transesterification biocatalysts. Journal of Basic Microbiology, 2020, 60, 112-125.	3.3	12
85	Secreted expression of an active human interferon-beta (HuIFNβ) inKluyveromyces lactis. Engineering in Life Sciences, 2016, 16, 379-385.	3.6	11
86	Tandem integration of aerobic fungal cellulase production, lignocellulose substrate saccharification and anaerobic ethanol fermentation by a modified gas lift bioreactor. Bioresource Technology, 2020, 302, 122902.	9.6	11
87	Optimization of Enzymatic Clarification of Sapodilla Juice: A Statistical Perspective. Applied Biochemistry and Biotechnology, 2008, 151, 353-363.	2.9	10
88	Characterization of a glucose tolerant β-glucosidase from Aspergillus unguis with high potential as a blend-in for biomass hydrolyzing enzyme cocktails. Biotechnology Letters, 2019, 41, 1201-1211.	2.2	10
89	Signal peptides from filamentous fungi efficiently mediate the secretion of recombinant proteins in Kluyveromyces lactis. Biochemical Engineering Journal, 2015, 102, 31-37.	3.6	9
90	Evaluation of a wet processing strategy for mixed phumdi biomass conversion to bioethanol. Bioresource Technology, 2019, 289, 121633.	9.6	9

#	Article	IF	CITATIONS
91	Chlorpyrifos induced proteome remodelling of Pseudomonas nitroreducens AR-3 potentially aid efficient degradation of the pesticide. Environmental Technology and Innovation, 2021, 21, 101307.	6.1	8
92	A machine learning-based approach to determine infection status in recipients of BBV152 (Covaxin) whole-virion inactivated SARS-CoV-2 vaccine for serological surveys. Computers in Biology and Medicine, 2022, 146, 105419.	7.0	8
93	Enzyme Technology in Food Processing: Recent Developments and Future Prospects. , 2021, , 191-215.		7
94	Integrated bioprocess for structured lipids, emulsifiers and biodiesel production using crude acidic olive pomace oils. Bioresource Technology, 2022, 346, 126646.	9.6	7
95	Biobutanol Production: Microbes, Feedstock, and Strategies. , 2019, , 355-377.		6
96	Growth and butanol production by Clostridium sporogenes BE01 in rice straw hydrolysate: kinetics of inhibition by organic acids and the strategies for their removal. Biomass Conversion and Biorefinery, 2014, 4, 277-283.	4.6	5
97	First- and Second-Generation Ethanol in India: A Comprehensive Overview on Feedstock Availability, Composition, and Potential Conversion Yields. , 2017, , 223-246.		5
98	Ethanol production by a filamentous fungal strain Byssochlamys fulva AM130 under alternating aerobic and oxygen-limited conditions. Systems Microbiology and Biomanufacturing, 2021, 1, 111-121.	2.9	4
99	Sono-Assisted Alkali and Dilute Acid Pretreatment of Phragmites karka (Tall Reed Grass) to Enhance Enzymatic Digestibility for Bioethanol Conversion. Frontiers in Energy Research, 2021, 8, .	2.3	4
100	Cellulase Hyper-Producing Fungus Penicillium janthinellum NCIM 1366 Elaborates a Wider Array of Proteins Involved inÂTransport and Secretion, Potentially Enabling a DiverseÂSubstrate Range. Bioenergy Research, 0, , 1.	3.9	4
101	Production of endoglucanase from Trichoderma reesei RUT C30 and its application in deinking of printed office waste paper. Biologia (Poland), 2016, 71, 265-271.	1.5	3
102	Draft genome of the glucose tolerant β-glucosidase producing rare Aspergillus unguis reveals complete cellulolytic machinery with multiple beta-glucosidase genes. Fungal Genetics and Biology, 2021, 151, 103551.	2.1	3
103	Biological treatment of prawn shell wastes for valorization and waste management. Bioresource Technology Reports, 2021, 15, 100788.	2.7	3
104	Repurposing proteases: An in-silico analysis of the binding potential of extracellular fungal proteases with selected viral proteins. Bioresource Technology Reports, 2021, 15, 100756.	2.7	2
105	A highly efficient stratagem for protoplast isolation and genetic transformation in filamentous fungus Colletotrichum falcatum. Folia Microbiologica, 2022, , .	2.3	2
106	Comparative Evaluation of Lignin Derived from Different Sugarcane Bagasse Pretreatments in the Synthesis of Wood Adhesive. Bioenergy Research, 0, , 1.	3.9	2
107	Sequential mild acid and alkali pretreatment of rice straw to improve enzymatic saccharification for bioethanol production. Preparative Biochemistry and Biotechnology, 2023, 53, 231-238.	1.9	2

#	Article	IF	CITATIONS
109	Enzyme Technologies: Current and Emerging Technologies for Development of Novel Enzyme Catalysts. , 2015, , 39-66.		1
110	Preface. Bioresource Technology, 2015, 188, 1.	9.6	0
111	International Conference on Current Trends in Biotechnology & post ICCB-2016 conference on Strategies for Environmental Protection and Management (ICSEPM-2016). Bioresource Technology, 2017, 242, 1.	9.6	0
112	Preface new horizons in biotechnology – NHBT 2019. Bioresource Technology, 2020, 313, 123774.	9.6	0
113	Pretreatment of Douglas Fir Wood Biomass for Improving Saccharification Efficiencies. Journal of ASTM International, 2010, 7, 1-8.	0.2	0
114	Nutrient Removal From Spent Effluent of Sorghum Biomass Pretreatment by Novel Chlorella Strain: Dual Potential for Spent Effluent Treatment and in Biofuel Application. Current Environmental Engineering, 2018, 5, 185-201.	0.6	0