Samar M Hammad

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3024113/publications.pdf Version: 2024-02-01

SAMAD M HAMMAD

#	Article	IF	CITATIONS
1	Blood sphingolipidomics in healthy humans: impact of sample collection methodology. Journal of Lipid Research, 2010, 51, 3074-3087.	4.2	272
2	Sphingolipids and Lipoproteins in Health and Metabolic Disorders. Trends in Endocrinology and Metabolism, 2017, 28, 506-518.	7.1	167
3	Megalin Acts in Concert with Cubilin to Mediate Endocytosis of High Density Lipoproteins. Journal of Biological Chemistry, 2000, 275, 12003-12008.	3.4	132
4	High Density Lipoprotein-associated Sphingosine 1-Phosphate Promotes Endothelial Barrier Function. Journal of Biological Chemistry, 2008, 283, 25074-25081.	3.4	114
5	Survival or death: a dual role for autophagy in stress-induced pericyte loss in diabetic retinopathy. Diabetologia, 2016, 59, 2251-2261.	6.3	94
6	Dual and distinct roles for sphingosine kinase 1 and sphingosine 1 phosphate in the response to inflammatory stimuli in RAW macrophages. Prostaglandins and Other Lipid Mediators, 2008, 85, 107-114.	1.9	91
7	Microsomal Triglyceride Transfer Protein Transfers and Determines Plasma Concentrations of Ceramide and Sphingomyelin but Not Glycosylceramide. Journal of Biological Chemistry, 2015, 290, 25863-25875.	3.4	68
8	Decreased plasma levels of select very long chain ceramide species Are associated with the development of nephropathy in type 1 diabetes. Metabolism: Clinical and Experimental, 2014, 63, 1287-1295.	3.4	61
9	Serum Carotenoids and Fat-Soluble Vitamins in Women With Type 1 Diabetes and Preeclampsia. Diabetes Care, 2011, 34, 1258-1264.	8.6	60
10	Sphingosine 1-Phosphate Distribution in Human Plasma: Associations with Lipid Profiles. Journal of Lipids, 2012, 2012, 1-8.	4.8	56
11	HDL3, but not HDL2, stimulates plasminogen activator inhibitor-1 release from adipocytes: the role of sphingosine-1-phosphate. Journal of Lipid Research, 2010, 51, 2619-2628.	4.2	50
12	Blood Sphingolipids in Homeostasis and Pathobiology. Advances in Experimental Medicine and Biology, 2011, 721, 57-66.	1.6	44
13	Oxidized LDL immune complexes induce release of sphingosine kinase in human U937 monocytic cells. Prostaglandins and Other Lipid Mediators, 2006, 79, 126-140.	1.9	42
14	Oxidized LDL immune complexes and oxidized LDL differentially affect the expression of genes involved with inflammation and survival in human U937 monocytic cells. Atherosclerosis, 2009, 202, 394-404.	0.8	40
15	Differential regulation of acid sphingomyelinase in macrophages stimulated with oxidized lowâ€density lipoprotein (LDL) and oxidized LDL immune complexes: role in phagocytosis and cytokine release. Immunology, 2012, 136, 30-45.	4.4	39
16	S1P in HDL promotes interaction between SR-BI and S1PR1 and activates S1PR1-mediated biological functions: calcium flux and S1PR1 internalization. Journal of Lipid Research, 2017, 58, 325-338.	4.2	35
17	Acid sphingomyelinase in macrophage biology. Cellular and Molecular Life Sciences, 2011, 68, 3293-3305.	5.4	33
18	Differential Trafficking of Oxidized LDL and Oxidized LDL Immune Complexes in Macrophages: Impact on Oxidative Stress. PLoS ONE, 2010, 5, e12534.	2.5	30

SAMAR M HAMMAD

#	Article	IF	CITATIONS
19	Serum Inflammatory Markers and Preeclampsia in Type 1 Diabetes. Diabetes Care, 2013, 36, 2054-2061.	8.6	29
20	Increased Plasma Levels of Select Deoxy-ceramide and Ceramide Species are Associated with Increased Odds of Diabetic Neuropathy in Type 1 Diabetes: A Pilot Study. NeuroMolecular Medicine, 2017, 19, 46-56.	3.4	29
21	Trace elements as predictors of preeclampsia in type 1 diabetic pregnancy. Nutrition Research, 2015, 35, 421-430.	2.9	27
22	Apoptosis induction by oxidized glycated LDL in human retinal capillary pericytes is independent of activation of MAPK signaling pathways. Molecular Vision, 2009, 15, 135-45.	1.1	26
23	Glycosylated sphingolipids and progression to kidney dysfunction in type 1 diabetes. Journal of Clinical Lipidology, 2019, 13, 481-491.e1.	1.5	25
24	Sphingolipids as Biomarkers of Disease. Advances in Experimental Medicine and Biology, 2019, 1159, 109-138.	1.6	25
25	3-ketodihydrosphingosine reductase mutation induces steatosis and hepatic injury in zebrafish. Scientific Reports, 2019, 9, 1138.	3.3	23
26	Heat Shock Protein 70B′ (HSP70B′) Expression and Release in Response to Human Oxidized Low Density Lipoprotein Immune Complexes in Macrophages. Journal of Biological Chemistry, 2010, 285, 15985-15993.	3.4	22
27	Plasma Lipoproteins and Preeclampsia in Women with Type 1 Diabetes: A Prospective Study. Journal of Clinical Endocrinology and Metabolism, 2012, 97, 1752-1762.	3.6	22
28	Low-Density Lipoprotein Induced Expression of Connective Tissue Growth Factor via Transactivation of Sphingosine 1-Phosphate Receptors in Mesangial Cells. Molecular Endocrinology, 2012, 26, 833-845.	3.7	21
29	Circulating adipokines are associated with pre-eclampsia in women with type 1 diabetes. Diabetologia, 2017, 60, 2514-2524.	6.3	21
30	Lack of nitric oxide synthases increases lipoprotein immune complex deposition in the aorta and elevates plasma sphingolipid levels in lupus. Cellular Immunology, 2012, 276, 42-51.	3.0	20
31	Lipoprotein subclass profiles of hyperlipidemic diabetic mice measured by nuclear magnetic resonance spectroscopy. Metabolism: Clinical and Experimental, 2003, 52, 916-921.	3.4	18
32	Accelerated vascular disease in systemic lupus erythematosus: Role of macrophage. Clinical Immunology, 2015, 157, 133-144.	3.2	18
33	ATP binding cassette family A protein 1 determines hexosylceramide and sphingomyelin levels in human and mouse plasma. Journal of Lipid Research, 2018, 59, 2084-2097.	4.2	16
34	Race disparity in blood sphingolipidomics associated with lupus cardiovascular comorbidity. PLoS ONE, 2019, 14, e0224496.	2.5	16
35	Subclinical First Trimester Renal Abnormalities Are Associated With Preeclampsia in Normoalbuminuric Women With Type 1 Diabetes. Diabetes Care, 2018, 41, 120-127.	8.6	14
36	Sphingolipids and Diagnosis, Prognosis, and Organ Damage in Systemic Lupus Erythematosus. Frontiers in Immunology, 2020, 11, 586737.	4.8	14

SAMAR M HAMMAD

#	Article	IF	CITATIONS
37	ALTERED BLOOD SPHINGOLIPIDOMICS AND ELEVATED PLASMA INFLAMMATORY CYTOKINES IN COMBAT VETERANS WITH POST-TRAUMATIC STRESS DISORDER. Neurobiology of Lipids, 2012, 10, 2.	1.0	14
38	Immune complexes containing malondialdehyde (MDA) LDL induce apoptosis in human macrophages. Clinical Immunology, 2018, 187, 1-9.	3.2	13
39	Differences in plasma levels of long chain and very long chain ceramides between African Americans and whites: An observational study. PLoS ONE, 2019, 14, e0216213.	2.5	13
40	Plasma Sphingolipid Profile Associated With Subclinical Atherosclerosis and Clinical Disease Markers of Systemic Lupus Erythematosus: Potential Predictive Value. Frontiers in Immunology, 2021, 12, 694318.	4.8	13
41	Nephropathy in a Hypercholesterolemic Mouse Model with Streptozotocin-Induced Diabetes. Kidney and Blood Pressure Research, 2003, 26, 351-361.	2.0	12
42	A novel intracellular fibulin-1D variant binds to the cytoplasmic domain of integrin beta 1 subunit. Matrix Biology, 2015, 43, 97-108.	3.6	10
43	Transcriptomics Reveal Altered Metabolic and Signaling Pathways in Podocytes Exposed to C16 Ceramide-Enriched Lipoproteins. Genes, 2020, 11, 178.	2.4	6
44	Haptoglobin Phenotype Modulates Lipoprotein-Associated Risk for Preeclampsia in Women With Type 1 Diabetes. Journal of Clinical Endocrinology and Metabolism, 2019, 104, 4743-4755.	3.6	5
45	Deoxysphingolipids Upregulate MMP-1, Downregulate TIMP-1, and Induce Cytotoxicity in Human Schwann Cells. NeuroMolecular Medicine, 2022, 24, 352-362.	3.4	5
46	Diabetes and kidney dysfunction markedly alter the content of sphingolipids carried by circulating lipoproteins. Journal of Clinical Lipidology, 2022, 16, 173-183.	1.5	5
47	Vitamin D Metabolites and Binding Protein Predict Preeclampsia in Women with Type 1 Diabetes. Nutrients, 2020, 12, 2048.	4.1	4
48	Plasma ApoM levels and Progression to Kidney Dysfunction in Type 1 Diabetics. Diabetes, 2022, , .	0.6	2
49	Response to Comment on Kelly et al. Subclinical First Trimester Renal Abnormalities Are Associated With Preeclampsia in Normoalbuminuric Women With Type 1 Diabetes. Diabetes Care 2018;41:120–127. Diabetes Care, 2018, 41, e102-e103.	8.6	0
50	Abstract 4171: Lipid metabolism-independent role of apolipoprotein (E) levels in colon carcinogenesis through a regulating inflammation and active β-catenin. , 2016, , .		0
51	1391-P: Longitudinal Changes of Plasma Sphingomyelins during Gestation in Women With and Without Type 1 Diabetes and Preeclampsia. Diabetes, 2019, 68, .	0.6	0
52	198-LB: Maternal Plasma AGEs and Preeclampsia in Women with Type 1 Diabetes. Diabetes, 2019, 68, .	0.6	0
53	1390-P: Maternal Plasma Ceramides Predict Preeclampsia in Women with Type 1 Diabetes. Diabetes, 2019, 68, 1390-P.	0.6	0