
David Eliezer

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3023409/publications.pdf Version: 2024-02-01

DAVID FLIEZED

#	Article	IF	CITATIONS
1	Post-translational modifications within tau paired helical filament nucleating motifs perturb microtubule interactions and oligomer formation. Journal of Biological Chemistry, 2022, 298, 101442.	3.4	16
2	Altered succinylation of mitochondrial proteins, APP and tau in Alzheimer's disease. Nature Communications, 2022, 13, 159.	12.8	42
3	The dopamine receptor agonist apomorphine stabilizes neurotoxic αâ€synuclein oligomers. FEBS Letters, 2022, 596, 309-322.	2.8	1
4	Homogalacturonan from squash: Characterization and tau-binding pattern of a sulfated derivative. Carbohydrate Polymers, 2022, 285, 119250.	10.2	11
5	Synaptic vesicle binding of α-synuclein is modulated by β- and γ-synucleins. Cell Reports, 2022, 39, 110675.	6.4	25
6	Membrane Binding Induces Distinct Structural Signatures in the Mouse Complexin-1C-Terminal Domain. Journal of Molecular Biology, 2022, , 167710.	4.2	4
7	Molecular and functional interactions of alpha-synuclein with Rab3a. Journal of Biological Chemistry, 2022, 298, 102239.	3.4	7
8	Chemoenzymatic Semiâ€synthesis Enables Efficient Production of Isotopically Labeled αâ€Synuclein with Siteâ€Specific Tyrosine Phosphorylation. ChemBioChem, 2021, 22, 1440-1447.	2.6	10
9	Fisetin inhibits tau aggregation by interacting with the protein and preventing the formation of β-strands. International Journal of Biological Macromolecules, 2021, 178, 381-393.	7.5	27
10	3―O ‣ulfation of Heparan Sulfate Enhances Tau Interaction and Cellular Uptake. Angewandte Chemie, 2020, 132, 1834-1843.	2.0	2
11	3â€ <i>O</i> â€Sulfation of Heparan Sulfate Enhances Tau Interaction and Cellular Uptake. Angewandte Chemie - International Edition, 2020, 59, 1818-1827.	13.8	71
12	Tau induces PSD95–neuronal NOS uncoupling and neurovascular dysfunction independent of neurodegeneration. Nature Neuroscience, 2020, 23, 1079-1089.	14.8	78
13	Use of paramagnetic 19F NMR to monitor domain movement in a glutamate transporter homolog. Nature Chemical Biology, 2020, 16, 1006-1012.	8.0	31
14	Inhibition of alpha-synuclein seeded fibril formation and toxicity by herbal medicinal extracts. BMC Complementary Medicine and Therapies, 2020, 20, 73.	2.7	22
15	Frontispiz: 3â€ <i>O</i> ulfation of Heparan Sulfate Enhances Tau Interaction and Cellular Uptake. Angewandte Chemie, 2020, 132, .	2.0	0
16	Frontispiece: 3â€ <i>O</i> ulfation of Heparan Sulfate Enhances Tau Interaction and Cellular Uptake. Angewandte Chemie - International Edition, 2020, 59, .	13.8	0
17	Phosphorylation of the overlooked tyrosine 310 regulates the structure, aggregation, and microtubule- and lipid-binding properties of Tau. Journal of Biological Chemistry, 2020, 295, 7905-7922.	3.4	32
18	Interactions of IDPs with Membranes Using Dark-State Exchange NMR Spectroscopy. Methods in Molecular Biology, 2020, 2141, 585-608.	0.9	5

#	Article	IF	CITATIONS
19	Probing IDP Interactions with Membranes by Fluorescence Spectroscopy. Methods in Molecular Biology, 2020, 2141, 555-567.	0.9	2
20	Regulation of exocytosis and mitochondrial relocalization by Alpha-synuclein in a mammalian cell model. Npj Parkinson's Disease, 2019, 5, 12.	5.3	23
21	Intrinsically disordered proteins in synaptic vesicle trafficking and release. Journal of Biological Chemistry, 2019, 294, 3325-3342.	3.4	56
22	Membrane interactions of intrinsically disordered proteins: The example of alpha-synuclein. Biochimica Et Biophysica Acta - Proteins and Proteomics, 2019, 1867, 879-889.	2.3	35
23	Probing Structural Changes in Alpha-Synuclein by Nuclear Magnetic Resonance Spectroscopy. Methods in Molecular Biology, 2019, 1948, 157-181.	0.9	4
24	Role of Parkinson's Disease-Linked Mutations and N-Terminal Acetylation on the Oligomerization of α-Synuclein Induced by 3,4-Dihydroxyphenylacetaldehyde. ACS Chemical Neuroscience, 2019, 10, 690-703.	3.5	27
25	Exchange of water for sterol underlies sterol egress from a StARkin domain. ELife, 2019, 8, .	6.0	18
26	Structural basis of sterol binding and transport by a yeast StARkin domain. Journal of Biological Chemistry, 2018, 293, 5522-5531.	3.4	42
27	Structure and dynamics of the extendedâ€helix state of alphaâ€synuclein: Intrinsic lability of the linker region. Protein Science, 2018, 27, 1314-1324.	7.6	11
28	Spectroscopic Characterization of Structure–Function Relationships in the Intrinsically Disordered Protein Complexin. Methods in Enzymology, 2018, 611, 227-286.	1.0	3
29	Exploring the role of methionine residues on the oligomerization and neurotoxic properties of DOPAL-modified α-synuclein. Biochemical and Biophysical Research Communications, 2018, 505, 295-301.	2.1	10
30	Parkinson's Disease and Melanoma: Co-Occurrence and Mechanisms. Journal of Parkinson's Disease, 2018, 8, 385-398.	2.8	72
31	A Protofilament-Protofilament Interface in the Structure of Mouse α-Synuclein Fibrils. Biophysical Journal, 2018, 114, 2811-2819.	0.5	10
32	Glycan Determinants of Heparin-Tau Interaction. Biophysical Journal, 2017, 112, 921-932.	0.5	68
33	Discovery and characterization of stable and toxic Tau/phospholipid oligomeric complexes. Nature Communications, 2017, 8, 1678.	12.8	117
34	Phosphorylation regulates the secondary structure and function of dentin phosphoprotein peptides. Bone, 2017, 95, 65-75.	2.9	18
35	Evolutionary Divergence of the C-terminal Domain of Complexin Accounts for Functional Disparities between Vertebrate and Invertebrate Complexins. Frontiers in Molecular Neuroscience, 2017, 10, 146.	2.9	29
36	Unique Structural Features of Membrane-Bound C-Terminal Domain Motifs Modulate Complexin Inhibitory Function. Frontiers in Molecular Neuroscience, 2017, 10, 154.	2.9	30

#	Article	IF	CITATIONS
37	Proteins acting out of (dis)order. ELife, 2017, 6, .	6.0	5
38	Conformational heterogeneity in closed and open states of the KcsA potassium channel in lipid bicelles. Journal of General Physiology, 2016, 148, 119-132.	1.9	20
39	Exposure to bacterial endotoxin generates a distinct strain of α-synuclein fibril. Scientific Reports, 2016, 6, 30891.	3.3	113
40	Semisynthetic and <i>in Vitro</i> Phosphorylation of Alpha-Synuclein at Y39 Promotes Functional Partly Helical Membrane-Bound States Resembling Those Induced by PD Mutations. ACS Chemical Biology, 2016, 11, 2428-2437.	3.4	64
41	STARD4 Membrane Interactions and Sterol Binding. Biochemistry, 2015, 54, 4623-4636.	2.5	52
42	Oligomerization and Membrane-binding Properties of Covalent Adducts Formed by the Interaction of α-Synuclein with the Toxic Dopamine Metabolite 3,4-Dihydroxyphenylacetaldehyde (DOPAL). Journal of Biological Chemistry, 2015, 290, 27660-27679.	3.4	100
43	Ginsenoside Rb1 inhibits fibrillation and toxicity of alpha-synuclein and disaggregates preformed fibrils. Neurobiology of Disease, 2015, 74, 89-101.	4.4	90
44	Functional Interactions of Disease‣inked Disordered Proteins: Alphaâ€Synuclein, Tau and Complexin. FASEB Journal, 2015, 29, 226.1.	0.5	0
45	Alpha-Synuclein Function and Dysfunction on Cellular Membranes. Experimental Neurobiology, 2014, 23, 292-313.	1.6	179
46	Membrane curvature sensing by the C-terminal domain of complexin. Nature Communications, 2014, 5, 4955.	12.8	71
47	Structure activity relationship of phenolic acid inhibitors of α-synuclein fibril formation and toxicity. Frontiers in Aging Neuroscience, 2014, 6, 197.	3.4	103
48	c-Abl phosphorylates α-synuclein and regulates its degradation: implication for α-synuclein clearance and contribution to the pathogenesis of Parkinson's disease. Human Molecular Genetics, 2014, 23, 2858-2879.	2.9	176
49	N-terminal Acetylation Stabilizes N-terminal Helicity in Lipid- and Micelle-bound α-Synuclein and Increases Its Affinity for Physiological Membranes. Journal of Biological Chemistry, 2014, 289, 3652-3665.	3.4	157
50	The novel Parkinson's disease linked mutation G51D attenuates in vitro aggregation and membrane binding of Â-synuclein, and enhances its secretion and nuclear localization in cells. Human Molecular Genetics, 2014, 23, 4491-4509.	2.9	194
51	The H50Q Mutation Enhances α-Synuclein Aggregation, Secretion, and Toxicity. Journal of Biological Chemistry, 2014, 289, 21856-21876.	3.4	152
52	Tau Binds to Lipid Membrane Surfaces via Short Amphipathic Helices Located in Its Microtubule-Binding Repeats. Biophysical Journal, 2014, 107, 1441-1452.	0.5	97
53	The accessory helix of complexin functions by stabilizing central helix secondary structure. ELife, 2014, 3, .	6.0	38
54	1H, 13C, and 15N backbone resonance assignments of the L124D mutant of StAR-related lipid transfer domain protein 4 (StARD4). Biomolecular NMR Assignments, 2013, 7, 245-8.	0.8	3

#	Article	IF	CITATIONS
55	Synaptic Vesicles Position Complexin to Block Spontaneous Fusion. Neuron, 2013, 77, 323-334.	8.1	83
56	The Mysterious C-Terminal Tail of Alpha-Synuclein: Nanobody's Guess. Journal of Molecular Biology, 2013, 425, 2393-2396.	4.2	20
57	Structural transitions in tau k18 on micelle binding suggest a hierarchy in the efficacy of individual microtubuleâ€binding repeats in filament nucleation. Protein Science, 2013, 22, 1037-1048.	7.6	57
58	Visualizing Amyloid Assembly. Science, 2012, 336, 308-309.	12.6	4
59	Characterization of Semisynthetic and Naturally Nα-Acetylated α-Synuclein in Vitro and in Intact Cells. Journal of Biological Chemistry, 2012, 287, 28243-28262.	3.4	148
60	Elucidating the Role of C-Terminal Post-Translational Modifications Using Protein Semisynthesis Strategies: α-Synuclein Phosphorylation at Tyrosine 125. Journal of the American Chemical Society, 2012, 134, 5196-5210.	13.7	95
61	Folding and misfolding of alpha-synuclein on membranes. Biochimica Et Biophysica Acta - Biomembranes, 2012, 1818, 1013-1018.	2.6	167
62	Binding of the three-repeat domain of tau to phospholipid membranes induces an aggregated-like state of the protein. Biochimica Et Biophysica Acta - Biomembranes, 2012, 1818, 2302-2313.	2.6	70
63	Distance Information for Disordered Proteins from NMR and ESR Measurements Using Paramagnetic Spin Labels. Methods in Molecular Biology, 2012, 895, 127-138.	0.9	17
64	α-Synuclein in Central Nervous System and from Erythrocytes, Mammalian Cells, and Escherichia coli Exists Predominantly as Disordered Monomer. Journal of Biological Chemistry, 2012, 287, 15345-15364.	3.4	466
65	Assigning Backbone NMR Resonances for Full Length Tau Isoforms: Efficient Compromise between Manual Assignments and Reduced Dimensionality. PLoS ONE, 2012, 7, e34679.	2.5	31
66	Structural Characterization of Two Alternate Conformations in a Calbindin D _{9k} -Based Molecular Switch. Biochemistry, 2011, 50, 5583-5589.	2.5	9
67	STARD4 abundance regulates sterol transport and sensing. Molecular Biology of the Cell, 2011, 22, 4004-4015.	2.1	108
68	The Lipid-binding Domain of Wild Type and Mutant α-Synuclein. Journal of Biological Chemistry, 2010, 285, 28261-28274.	3.4	132
69	Identification of a helical intermediate in trifluoroethanol-induced alpha-synuclein aggregation. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 18850-18855.	7.1	161
70	Phosphorylation at S87 Is Enhanced in Synucleinopathies, Inhibits α-Synuclein Oligomerization, and Influences Synuclein-Membrane Interactions. Journal of Neuroscience, 2010, 30, 3184-3198.	3.6	271
71	Biophysical characterization of intrinsically disordered proteins. Current Opinion in Structural Biology, 2009, 19, 23-30.	5.7	307
72	Charge neutralization and collapse of the Câ€ŧerminal tail of alphaâ€synuclein at low pH. Protein Science, 2009, 18, 1531-1540.	7.6	83

#	Article	IF	CITATIONS
73	E46K Parkinson's-Linked Mutation Enhances C-Terminal-to-N-Terminal Contacts in α-Synuclein. Journal of Molecular Biology, 2009, 388, 1022-1032.	4.2	92
74	Synuclein Structure and Function in Parkinson's Disease. Focus on Structural Biology, 2009, , 159-174.	0.1	3
75	Biophysics of Parkinsons Disease: Structure and Aggregation of α- Synuclein. Current Protein and Peptide Science, 2009, 10, 483-499.	1.4	292
76	Structural effects of Parkinson's disease linked DJâ€1 mutations. Protein Science, 2008, 17, 855-868.	7.6	68
77	Protein Folding and Aggregation in in vitro Models of Parkinson's Disease. , 2008, , 575-595.		11
78	Membrane-Bound α-Synuclein Forms an Extended Helix: Long-Distance Pulsed ESR Measurements Using Vesicles, Bicelles, and Rodlike Micelles. Journal of the American Chemical Society, 2008, 130, 12856-12857.	13.7	253
79	Phosphorylation at Ser-129 but Not the Phosphomimics S129E/D Inhibits the Fibrillation of α-Synuclein. Journal of Biological Chemistry, 2008, 283, 16895-16905.	3.4	302
80	Characterizing Residual Structure in Disordered Protein States Using Nuclear Magnetic Resonance. , 2007, 350, 49-68.		60
81	Residual Structure, Backbone Dynamics, and Interactions within the Synuclein Family. Journal of Molecular Biology, 2007, 372, 689-707.	4.2	137
82	The Impact of the E46K Mutation on the Properties of α-Synuclein in Its Monomeric and Oligomeric States. Biochemistry, 2007, 46, 7107-7118.	2.5	198
83	Proteins hunt and gather. Nature, 2007, 447, 920-921.	27.8	17
84	Amyloid Ion Channels: A Porous Argument or a Thin Excuse?. Journal of General Physiology, 2006, 128, 631-633.	1.9	29
85	Quantification of α-Synuclein Binding to Lipid Vesicles Using Fluorescence Correlation Spectroscopy. Biophysical Journal, 2006, 90, 4692-4700.	0.5	235
86	Inter-Helix Distances in Lysophospholipid Micelle-Bound α-Synuclein from Pulsed ESR Measurements. Journal of the American Chemical Society, 2006, 128, 10004-10005.	13.7	89
87	Folding of the Repeat Domain of Tau Upon Binding to Lipid Surfaces. Journal of Molecular Biology, 2006, 362, 312-326.	4.2	61
88	NMR mapping of copper binding sites in alpha-synuclein. Biochimica Et Biophysica Acta - Proteins and Proteomics, 2006, 1764, 5-12.	2.3	105
89	Secondary structure and dynamics of micelle bound β- and γ-synuclein. Protein Science, 2006, 15, 1162-1174.	7.6	46
90	Residual Structure in the Repeat Domain of Tau:Â Echoes of Microtubule Binding and Paired Helical Filament Formationâ€. Biochemistry, 2005, 44, 1026-1036.	2.5	105

#	Article	IF	CITATIONS
91	Helix periodicity, topology, and dynamics of membrane-associated Â-Synuclein. Protein Science, 2005, 14, 862-872.	7.6	140
92	Effects of Parkinson's Disease-Linked Mutations on the Structure of Lipid-Associated α-Synucleinâ€. Biochemistry, 2004, 43, 4810-4818.	2.5	135
93	A Structural and Functional Role for 11-mer Repeats in α-Synuclein and Other Exchangeable Lipid Binding Proteins. Journal of Molecular Biology, 2003, 329, 763-778.	4.2	404
94	NMR Structural and Dynamic Characterization of the Acid-Unfolded State of Apomyoglobin Provides Insights into the Early Events in Protein Foldingâ€,‡. Biochemistry, 2001, 40, 3561-3571.	2.5	212
95	Conformational properties of α-synuclein in its free and lipid-associated states 1 1Edited by P. E. Wright. Journal of Molecular Biology, 2001, 307, 1061-1073.	4.2	980
96	Residual Structure and Dynamics in Parkinson's Disease-associated Mutants of α-Synuclein. Journal of Biological Chemistry, 2001, 276, 45996-46003.	3.4	233
97	Structural and dynamic characterization of partially folded states of apomyoglobin and implications for protein folding. Nature Structural Biology, 1998, 18, 148-155.	9.7	344
98	Populating the equilibrium molten globule state of apomyoglobin under conditions suitable for structural characterization by NMR. FEBS Letters, 1997, 417, 92-96.	2.8	53