Michael Jetter

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3023355/publications.pdf

Version: 2024-02-01

220 papers

3,602 citations

33 h-index 182427 51 g-index

229 all docs

229 docs citations

times ranked

229

3109 citing authors

#	Article	IF	CITATIONS
1	Thin-film InGaAs metamorphic buffer for telecom C-band InAs quantum dots and optical resonators on GaAs platform. Nanophotonics, 2022, 11, 1109-1116.	6.0	20
2	Optical charge injection and coherent control of a quantum-dot spin-qubit emitting at telecom wavelengths. Nature Communications, 2022, 13, 748.	12.8	19
3	Non-equilibrium spin noise spectroscopy of a single quantum dot operating at fiber telecommunication wavelengths. Journal of Applied Physics, 2022, 131, 065703.	2.5	1
4	Integrated Optoelectronic Devices Using Labâ€Onâ€Fiber Technology. Advanced Materials Technologies, 2022, 7, .	5.8	8
5	InGaAsP VECSEL for watt-level output at a wavelength around 765 nm. Optics Letters, 2022, 47, 2178.	3.3	2
6	Direct Imaging of the Carrier Capture into Individual InP Quantum Dots of a Semiconductor Disk Laser Membrane. ACS Nano, 2022, 16, 4619-4628.	14.6	0
7	High-power quasi-CW diode-pumped 750-nm AlGaAs VECSEL emitting a peak power of 29.6â€W and an average power of 8.5â€W. Optics Letters, 2022, 47, 1980.	3.3	3
8	3D printed micro-optics for quantum technology: Optimised coupling of single quantum dot emission into a single-mode fibre. Light Advanced Manufacturing, 2021, 2, 103.	5.1	26
9	Delaying two-photon Fock states in hot cesium vapor using single photons generated on demand from a semiconductor quantum dot. Physical Review B, 2021, 103, .	3.2	O
10	High-Power Quasi-CW Diode-Pumped 750†nm VECSEL Emitting a Peak Power of 29.6†W and an Average Power of 8.5†W., 2021, , .		0
11	Efficient and stable fiber-to-chip coupling enabling the injection of telecom quantum dot photons into a silicon photonic chip. , 2021 , , .		O
12	Investigation of Resonance Fluorescence in the Telecom C-Band from In(Ga)As Quantum Dots., 2021,,.		0
13	Resonance fluorescence of single In(Ga)As quantum dots emitting in the telecom C-band. Applied Physics Letters, 2021, 118, .	3.3	19
14	Microcavity-enhanced Kerr nonlinearity in a vertical-external-cavity surface-emitting laser: erratum. Optics Express, 2021, 29, 23290.	3.4	1
15	Bright Purcell Enhanced Single-Photon Source in the Telecom O-Band Based on a Quantum Dot in a Circular Bragg Grating. Nano Letters, 2021, 21, 7740-7745.	9.1	39
16	Subthreshold Spectral Bi-Modality of Double Layer InP/AlGaInP Quantum Dot Laser., 2021,,.		1
17	Achieving stable fiber coupling of quantum dot telecom C-band single-photons to an SOI photonic device. Applied Physics Letters, 2021, 119, .	3.3	8
18	Controllable Delay and Polarization Routing of Single Photons. Advanced Quantum Technologies, 2020, 3, 1900057.	3.9	5

#	Article	IF	CITATIONS
19	Wavelength and Pump-Power Dependent Nonlinear Refraction and Absorption in a Semiconductor Disk Laser. IEEE Photonics Technology Letters, 2020, 32, 85-88.	2.5	3
20	Stable fundamental and dual-pulse mode locking of red-emitting VECSELs. Laser Physics Letters, 2020, 17, 065001.	1.4	5
21	Characterization of spectral diffusion by slow-light photon-correlation spectroscopy. Physical Review B, 2020, 101, .	3.2	9
22	Purcell-enhanced single-photon emission from a strain-tunable quantum dot in a cavity-waveguide device. Applied Physics Letters, 2020, 117 , .	3.3	16
23	Quantum dot-based broadband optical antenna for efficient extraction of single photons in the telecom O-band. Optics Express, 2020, 28, 19457.	3.4	16
24	Gaussian-like transverse-mode profile characteristics of high-power large-area red-emitting VCSELs. Optics Letters, 2020, 45, 1419.	3.3	3
25	Realization of a tunable fiber-based double cavity system. Physical Review B, 2020, 102, .	3.2	5
26	Coherence and indistinguishability of highly pure single photons from non-resonantly and resonantly excited telecom C-band quantum dots. Applied Physics Letters, 2019, 115, .	3.3	48
27	Semiconductor Quantum Dots for Integrated Quantum Photonics. Advanced Quantum Technologies, 2019, 2, 1900020.	3.9	45
28	Semiconductor Quantum Dots for Integrated Quantum Photonics (Adv. Quantum Technol. 9/2019). Advanced Quantum Technologies, 2019, 2, 1970053.	3.9	3
29	Influence of Spacer Thickness on the Optical Properties of Vertically Stacked InP/AlGaInP Quantum Dot Lasers at the Short Wavelength. , 2019, , .		0
30	Tuning emission energy and fine structure splitting in quantum dots emitting in the telecom O-band. AIP Advances, 2019, 9, .	1.3	7
31	Deterministic fabrication of circular Bragg gratings coupled to single quantum emitters via the combination of <i>in-situ</i> optical lithography and electron-beam lithography. Journal of Applied Physics, 2019, 125, .	2.5	27
32	Optical Gain and Lasing Properties of InP/AlGaInP Quantum-Dot Laser Diode Emitting at 660 nm. IEEE Journal of Quantum Electronics, 2019, 55, 1-7.	1.9	17
33	Single-photon light-emitting diodes based on preselected quantum dots using a deterministic lithography technique. Applied Physics Letters, 2019, 114, .	3.3	8
34	Characterization of a Photon-Number Resolving SNSPD Using Poissonian and Sub-Poissonian Light. IEEE Transactions on Applied Superconductivity, 2019, 29, 1-5.	1.7	9
35	InAs quantum dots grown on metamorphic buffers as non-classical light sources at telecom C-band: a review. Semiconductor Science and Technology, 2019, 34, 053001.	2.0	47
36	Two-photon interference in the telecom C-band after frequency conversion of photons from remote quantum emitters. Nature Nanotechnology, 2019, 14, 23-26.	31.5	82

#	Article	IF	Citations
37	Microcavity-enhanced Kerr nonlinearity in a vertical-external-cavity surface-emitting laser. Optics Express, 2019, 27, 11914.	3.4	16
38	InP/AlGaInP quantum dot laser emitting at short wavelength of 660 nm., 2019, , .		0
39	Investigations on the origins of self-mode-locking in Vertical-External-Cavity Surface-Emitting-Lasers: Nonlinear lensing and the role of the microcavity. , 2019, , .		0
40	Development of electrically pumped VECSEL in the visible spectrum. , 2019, , .		1
41	Signatures of single-photon interaction between two quantum dots located in different cavities of a weakly coupled double microdisk structure. Physical Review B, 2018, 97, .	3.2	7
42	Chem/bio sensing with non-classical light and integrated photonics. Analyst, The, 2018, 143, 593-605.	3.5	18
43	Fully On-Chip Single-Photon Hanbury-Brown and Twiss Experiment on a Monolithic Semiconductor–Superconductor Platform. Nano Letters, 2018, 18, 6892-6897.	9.1	61
44	Structural and optical properties of InAs/(In)GaAs/GaAs quantum dots with single-photon emission in the telecom C-band up to 77 K. Physical Review B, 2018, 98, .	3.2	41
45	Overcoming correlation fluctuations in two-photon interference experiments with differently bright and independently blinking remote quantum emitters. Physical Review B, 2018, 97, .	3.2	15
46	Pure single-photon emission from In(Ga)As QDs in a tunable fiber-based external mirror microcavity. Quantum Science and Technology, 2018, 3, 034009.	5.8	10
47	Two-photon interference in an atom–quantum dot hybrid system. Optica, 2018, 5, 367.	9.3	29
48	Deterministic integration and optical characterization of telecom O-band quantum dots embedded into wet-chemically etched Gaussian-shaped microlenses. Applied Physics Letters, $2018,113,.$	3.3	33
49	Single-photon and polarization-entangled photon emission from InAs quantum dots in the telecom C-band. , 2018, , .		1
50	Bragg grating cavities embedded into nano-photonic waveguides for Purcell enhanced quantum dot emission. Optics Express, 2018, 26, 30614.	3.4	16
51	Combining in-situ lithography with 3D printed solid immersion lenses for single quantum dot spectroscopy. Scientific Reports, 2017, 7, 39916.	3.3	57
52	The optically pumped semiconductor membrane external-cavity surface-emitting laser (MECSEL): a concept based on a diamond-sandwiched active region. , 2017, , .		2
53	Improved gain chip holder design for high efficient, high power AlGaInP-VECSEL. , 2017, , .		0
54	Temperature-dependent properties of single long-wavelength InGaAs quantum dots embedded in a strain reducing layer. Journal of Applied Physics, 2017, 121, 184302.	2.5	18

#	Article	IF	CITATIONS
55	Schemes for efficient QW pumping of AlGaInP disk lasers. Proceedings of SPIE, 2017, , .	0.8	1
56	Polarization-entangled photons from an InGaAs-based quantum dot emitting in the telecom C-band. Applied Physics Letters, 2017, 111 , .	3.3	60
57	Single-photon emission at 1.55 <i>1/4</i> m from MOVPE-grown InAs quantum dots on InGaAs/GaAs metamorphic buffers. Applied Physics Letters, 2017, 111, .	3.3	95
58	Self-mode-locked AlGaInP-VECSEL. Applied Physics Letters, 2017, 111, .	3.3	15
59	Quantitative STEM: Comparative Studies of Composition and Optical Properties of Semiconductor Quantum Structures. Microscopy and Microanalysis, 2017, 23, 1690-1691.	0.4	0
60	DBRâ€free semiconductor disc laser on SiC heatspreader emitting 10.1 W at 1007Ânm. Electronics Letters, 2017, 53, 1537-1539.	1.0	23
61	Quantum dots interfaced with alkali atoms: Filtering, delaying and quantum interfering single photons. , 2017, , .		0
62	Towards InP-based QD-VCSELs emitting at 633 nm., 2017,,.		0
63	Semiconductor membrane laser concept (MECSEL) applicable to various materials towards new emission wavelengths. , 2017 , , .		0
64	Mode-locked red-emitting VECSELs., 2017,,.		0
65	Photonic Integrated Circuits with Quantum Dots. Nano-optics and Nanophotonics, 2017, , 409-441.	0.2	0
66	Simultaneous filtering of the Mollow triplet sidebands via a Cs-based Faraday filter. , 2017, , .		0
67	Low-noise quantum frequency down-conversion of indistinguishable photons. Optics Express, 2016, 24, 22250.	3.4	27
68	Semiconductor membrane external-cavity surface-emitting laser (MECSEL). Optica, 2016, 3, 1506.	9.3	63
69	Simultaneous Faraday filtering of the Mollow triplet sidebands with the Cs-D1 clock transition. Nature Communications, 2016, 7, 13632.	12.8	43
70	Mid-Infrared Spectroscopy Platform Based on GaAs/AlGaAs Thin-Film Waveguides and Quantum Cascade Lasers. Analytical Chemistry, 2016, 88, 2558-2562.	6.5	48
71	Quantitative measurements of internal electric fields with differential phase contrast microscopy on InGaN/GaN quantum well structures. Physica Status Solidi (B): Basic Research, 2016, 253, 140-144.	1.5	31
72	Defect reduced selectively grown GaN pyramids as template for green InGaN quantum wells. Physica Status Solidi (B): Basic Research, 2016, 253, 67-72.	1.5	2

#	Article	IF	CITATIONS
73	Neutral and charged biexciton-exciton cascade in near-telecom-wavelength quantum dots. Physical Review B, 2016, 94, .	3.2	21
74	Generation, guiding and splitting of triggered single photons from a resonantly excited quantum dot in a photonic circuit. Optics Express, 2016, 24, 3089.	3.4	30
75	Efficiency and power scaling of in-well and multi-pass pumped AlGaInP VECSELs. Proceedings of SPIE, 2016, , .	0.8	2
76	25  W continuous wave output at 665  nm from a multipass and quantum-well-pumped AlGaInP vertical-external-cavity surface-emitting laser. Optics Letters, 2016, 41, 1245.	3.3	24
77	Single-photon and photon pair emission from MOVPE-grown In(Ga)As quantum dots: shifting the emission wavelength from 1.0 to $1.3 \hat{A}^{1}$ 4m. Applied Physics B: Lasers and Optics, 2016, 122, 1.	2.2	18
78	Gain chip design, power scaling and intra-cavity frequency doubling with LBO of optically pumped red-emitting AlGaInP-VECSELs. , $2016, , .$		3
79	Degradation studies and pump optimization of optically pumped red-emitting AlGalnP-VECSELs. , 2015, , .		O
80	Comparison of AlGaInP-VECSEL gain structures. Journal of Crystal Growth, 2015, 414, 219-222.	1.5	8
81	Monolithic on-chip integration of semiconductor waveguides, beamsplitters and single-photon sources. Journal Physics D: Applied Physics, 2015, 48, 085101.	2.8	36
82	Quantum dot based mode-locked AlGaInP-VECSEL. Proceedings of SPIE, 2015, , .	0.8	3
83	Fabrication and optical characterization of large scale membrane containing InP/AlGaInP quantum dots. Nanotechnology, 2015, 26, 235201.	2.6	1
84	Enhanced efficiency of AlGaInP disk laser by in-well pumping. Optics Express, 2015, 23, 2472.	3.4	18
85	Intra-cavity frequency-doubled mode-locked semiconductor disk laser at 325 nm. Optics Express, 2015, 23, 19947.	3.4	22
86	Metal-organic vapor-phase epitaxy-grown ultra-low density InGaAs/GaAs quantum dots exhibiting cascaded single-photon emission at 1.3 <i>μ</i> m. Applied Physics Letters, 2015, 106, .	3.3	36
87	On-chip beamsplitter operation on single photons from quasi-resonantly excited quantum dots embedded in GaAs rib waveguides. Applied Physics Letters, 2015, 107, .	3.3	30
88	Thin-film mid-infrared semiconductor waveguide technology. , 2014, , .		0
89	Spectroscopy of the <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"> <mml:msub> <mml:mi>D</mml:mi> <mml:mn>1</mml:mn> of cesium by dressed-state resonance fluorescence from a single (In,Ga)As/GaAs quantum dot. Physical Review B. 2014. 90</mml:msub></mml:math>	ار 3.2 mml:ms	sub>21
90	Structural and emission properties of InGaAs/GaAs quantum dots emitting at 1 32€% 14m Applied Physics	3.3	19

#	Article	IF	CITATIONS
91	Femtosecond mode-locked red AlGaInP-VECSEL. Proceedings of SPIE, 2014, , .	0.8	2
92	High optical output power in the UVA range of a frequency-doubled, strain-compensated AlGaInP-VECSEL. Applied Physics Express, 2014, 7, 092705.	2.4	19
93	All quantum dot mode-locked semiconductor disk laser emitting at 655 nm. Applied Physics Letters, 2014, 105, .	3.3	14
94	Active and Passive LC Based Polarization Elements. Molecular Crystals and Liquid Crystals, 2014, 594, 140-149.	0.9	3
95	Strain compensation techniques for red AlGaInP-VECSELs: Performance comparison of epitaxial designs. Journal of Crystal Growth, 2013, 370, 208-211.	1.5	10
96	Influence of the oxide aperture radius on the mode spectra of (Al,Ga)As vertical microcavities with electrically excited InP quantum dots. Applied Physics Letters, 2013, 102 , .	3.3	3
97	High-power InP quantum dot based semiconductor disk laser exceeding 1.3 W. Applied Physics Letters, 2013, 102, .	3.3	25
98	Red Emitting VCSEL. Springer Series in Optical Sciences, 2013, , 379-401.	0.7	0
99	Mode-locked red-emitting semiconductor disk laser with sub-250 fs pulses. Applied Physics Letters, 2013, 103, .	3.3	35
100	Site-controlled growth of InP/GaInP islands on periodic hole patterns in GaAs substrates produced by microsphere photolithography. Journal of Crystal Growth, 2013, 370, 146-149.	1.5	4
101	Detuning-dependent Mollow triplet of a coherently-driven single quantum dot. Optics Express, 2013, 21, 4382.	3.4	132
102	Mollow quintuplets from coherently excited quantum dots. Optics Letters, 2013, 38, 1691.	3.3	16
103	Strong mode coupling in InP quantum dot-based GaInP microdisk cavity dimers. New Journal of Physics, 2013, 15, 013060.	2.9	9
104	Postselected indistinguishable single-photon emission from the Mollow triplet sidebands of a resonantly excited quantum dot. Physical Review B, 2013, 87 , .	3.2	15
105	Quantum frequency conversion of visible single photons from a quantum dot to a telecom band. , 2013, , .		0
106	InP quantum dot based semiconductor disk laser emitting at 655 nm., 2013,,.		0
107	Electrically driven quantum dot single-photon source at 2 GHz excitation repetition rate with ultra-low emission time jitter. Applied Physics Letters, 2013, 102, .	3.3	48
108	SESAM mode-locked red AlGaInP semiconductor disk laser emitting at 665 nm., 2013, , .		0

#	Article	IF	Citations
109	The phase boundary of superconducting niobium thin films with antidot arrays fabricated with microsphere photolithography. Superconductor Science and Technology, 2012, 25, 065020.	3.5	5
110	Transverse mode and polarization characteristics of AlGaInP-based VCSELs with integrated multiple oxide apertures. Proceedings of SPIE, 2012, , .	0.8	1
111	Electron and hole spins in InP/(Ga,In)P self-assembled quantum dots. Physical Review B, 2012, 86, .	3.2	10
112	Frequency doubled AlGaInP-VECSEL with high output power at 331 nm and a large wavelength tuning range in the UV. , 2012 , , .		2
113	UV laser emission around 330 nm via intracavity frequency doubling of a tunable red AlGalnP-VECSEL., 2012, , .		2
114	Direct imaging of GaN Pyramids covered by InGaN Single Quantum Well using nano-scale Scanning Transmission Electron Microscopy Cathodoluminescence. Microscopy and Microanalysis, 2012, 18, 1838-1839.	0.4	1
115	Reducing vortex losses in superconducting microwave resonators with microsphere patterned antidot arrays. Applied Physics Letters, 2012, 100 , .	3.3	38
116	Ultra-sensitive mid-infrared evanescent field sensors combining thin-film strip waveguides with quantum cascade lasers. Analyst, The, 2012, 137, 2322.	3.5	70
117	Cascaded single-photon emission from the Mollow triplet sidebands of a quantum dot. Nature Photonics, 2012, 6, 238-242.	31.4	128
118	Strong antibunching from electrically driven devices with long pulses: A regime for quantum-dot single-photon generation. Physical Review B, 2012, 86, .	3.2	9
119	Visible-to-Telecom Quantum Frequency Conversion of Light from a Single Quantum Emitter. Physical Review Letters, 2012, 109, 147404.	7.8	207
120	Quantum key distribution using quantum dot single-photon emitting diodes in the red and near infrared spectral range. New Journal of Physics, 2012, 14, 083001.	2.9	80
121	Single-photon emission from electrically driven InP quantum dots epitaxially grown on CMOS-compatible Si(001). Nanotechnology, 2012, 23, 335201.	2.6	10
122	Red AlGaInP-VECSEL emitting at around 665 nm: strain compensation and performance comparison of different epitaxial designs. Proceedings of SPIE, 2012, , .	0.8	4
123	Phonon-assisted incoherent excitation of a quantum dot and its emission properties. Physical Review B, 2012, 86, .	3.2	60
124	Excited-state spectroscopy of single lateral self-assembled InGaAs quantum dot molecules. Physical Review B, 2012, 85, .	3.2	8
125	Epitaxially Grown Indium Phosphide Quantum Dots on a Virtual Ge Substrate Realized on Si(001). Applied Physics Express, 2012, 5, 042001.	2.4	2
126	Vertically stacked and laterally ordered InP and In(Ga)As quantum dots for quantum gate applications. Physica Status Solidi (B): Basic Research, 2012, 249, 737-746.	1.5	8

#	Article	IF	CITATIONS
127	Optical investigations on single vertically coupled InP/GaInP quantum dot pairs. Physica Status Solidi (B): Basic Research, 2012, 249, 747-751.	1.5	5
128	Differential phase contrast 2.0—Opening new "fields―for an established technique. Ultramicroscopy, 2012, 117, 7-14.	1.9	86
129	Quantum Frequency Down-Conversion of Single Photons from a Quantum Dot to the Telecom Band. , 2012, , .		0
130	Photons on demand from an electrically driven single quantum dot under pulsed excitation., 2012,,.		0
131	5 GHz modulation of 650 nm VCSEL. , 2011, , . Lasing properties of InP/(Ga <mml:math)="" 0="" etqq0="" rgbt<="" td="" tj="" xmlns:mml="http://www.w3.org/1998/Math/MathML"><td>/Overlock</td><td>o 10 Tf 50 567</td></mml:math>	/Overlock	o 10 Tf 50 567
132		3.2	24
133	Algann b-based Vertical-Cavity Surface-Emitting Lasers for Sensoring and Polarization Switching., 2011,		O
134	High-frequency Triggered Single—Photon Emission From Electrically Driven InPâ^•(Al,Ga)InP Quantum Dots. AIP Conference Proceedings, 2011, , .	0.4	0
135	Approaches for Illâ•V Photonics on Si. AIP Conference Proceedings, 2011, , .	0.4	0
136	Wavelength tunable red AlGaInP-VECSEL emitting at around 660 nm. Proceedings of SPIE, 2011, , .	0.8	3
137	Transverse-Mode Analysis of Red-Emitting Highly Polarized Vertical-Cavity Surface-Emitting Lasers. IEEE Journal of Selected Topics in Quantum Electronics, 2011, 17, 724-729.	2.9	9
138	Short wavelength red-emitting AlGaInP-VECSEL exceeds 1.2 W continuous-wave output power. Applied Physics B: Lasers and Optics, 2011, 102, 789-794.	2.2	25
139	Growth and characterization of electrically pumped red-emitting VCSEL with embedded InP/AlGaInP quantumdots. Journal of Crystal Growth, 2011, 315, 131-133.	1.5	3
140	Quaternary AlxInyGa1â^'xâ^'yN layers deposited by pulsed metal-organic vapor-phase epitaxy for high efficiency light emission. Journal of Crystal Growth, 2011, 315, 254-257.	1.5	9
141	Threeâ€dimensional GaN for semipolar light emitters. Physica Status Solidi (B): Basic Research, 2011, 248, 549-560.	1.5	62
142	High wavelength tunability of InGaN quantum wells grown on semipolar GaN pyramid facets. Physica Status Solidi (B): Basic Research, 2011, 248, 605-610.	1.5	21
143	Spectrally and timeâ€resolved cathodoluminescence microscopy of semipolar InGaN SQW on (11\$overline {2} \$2) and (10\$overline {1} \$1) pyramid facets. Physica Status Solidi (B): Basic Research, 2011, 248, 632-637.	1.5	12
144	MOVPE grown quaternary AllnGaN layers for polarization matched quantum wells and efficient active regions. Physica Status Solidi C: Current Topics in Solid State Physics, 2011, 8, 2163-2166.	0.8	3

#	Article	IF	CITATIONS
145	Spectral features in different sized InGaN/GaN micropyramids. Physica Status Solidi C: Current Topics in Solid State Physics, 2011, 8, 2387-2389.	0.8	2
146	InP/AlGaInP quantum dot laser emitting at 638nm. Journal of Crystal Growth, 2011, 315, 123-126.	1.5	65
147	Pulsed single-photon resonant-cavity quantum dot LED. Journal of Crystal Growth, 2011, 315, 127-130.	1.5	7
148	Wavelength tunable ultraviolet laser emission via intra-cavity frequency doubling of an AlGaInP vertical external-cavity surface-emitting laser down to 328 nm. Applied Physics Letters, 2011, 99, .	3.3	22
149	Triggered single-photon emission in the red spectral range from optically excited InP/(Al,Ga)InP quantum dots embedded in micropillars up to 100 K. Journal of Applied Physics, 2011, 110, 063108.	2.5	17
150	Generation of UV laser light via intra-cavity frequency doubling of an AlGaInP-VECSEL., 2011, , .		2
151	High-frequency electrically driven quantum dot single-photon source. , 2011, , .		0
152	Low threshold and room-temperature lasing of electrically pumped red-emitting InP/(Al0.20Ga0.80)0.51In0.49P quantum dots. Journal of Physics: Conference Series, 2010, 210, 012009.	0.4	0
153	Transport of laser accelerated proton beams and isochoric heating of matter. Journal of Physics: Conference Series, 2010, 244, 012009.	0.4	5
154	DC and pulsed electrical excitation of single quantum dots. Proceedings of SPIE, 2010, , .	0.8	1
155	MOVPE grown InGaAs quantum dots of high optical quality as seed layer for low-density InP quantum dots. Journal of Physics: Conference Series, 2010, 245, 012009.	0.4	0
156	Influence of the Exciton Dark State on the Optical and Quantum Optical Properties of Single Quantum Dots. , 2010, , .		0
157	Electrically pumped single-photon emission up to 80 K—Towards a commercial single-photon emitting device. , 2010, , .		0
158	InP quantum dots in pillar microcavities – mode spectra and single-photon emission. Journal of Physics: Conference Series, 2010, 210, 012010.	0.4	2
159	InP quantum dots for applications in laser devices and future solid-state quantum gates. Journal of Physics: Conference Series, 2010, 245, 012077.	0.4	4
160	Smooth transition into stimulated emission of InP quantum dots based high-Q microdisk cavities. Journal of Physics: Conference Series, 2010, 210, 012008.	0.4	0
161	Triggered single-photon emission from electrically excited quantum dots in the red spectral range. Applied Physics Letters, 2010, 97, .	3.3	27
162	Low-density InP quantum dots embedded in Ga0.51In0.49P with high optical quality realized by a strain inducing layer. Applied Physics Letters, 2010, 97, 063107.	3.3	13

#	Article	lF	Citations
163	Low density MOVPE grown InGaAs QDs exhibiting ultra-narrow single exciton linewidths. Nanotechnology, 2010, 21, 125606.	2.6	12
164	Optical properties of red emitting self-assembled InP/(Al_020Ga_080)_051In_049P quantum dot based micropillars. Optics Express, 2010, 18, 12543.	3.4	5
165	Optical and structural properties of InP quantum dots embedded in <mml:math display="inline" xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mr< td=""><td>:msüb><m< td=""><td>ıml:mrow> (1</td></m<></td></mml:mr<></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:math>	:msüb> <m< td=""><td>ıml:mrow> (1</td></m<>	ıml:mrow> (1
166	Room-temperature lasing of electrically pumped red-emitting InP/(Al0.20Ga0.80)0.51In0.49P quantum dots embedded in a vertical microcavity. Applied Physics Letters, 2009, 95, .	3.3	23
167	Low Threshold InP/AlGaInP Quantum Dot In-Plane Laser Emitting at 638 nm. Applied Physics Express, 2009, 2, 112501.	2.4	14
168	InP-quantum dots in Al0.20Ga0.80InP with different barrier configurations. Physica Status Solidi C: Current Topics in Solid State Physics, 2009, 6, 906-909.	0.8	2
169	Low threshold electrically pumped red emitting InP/Al <inf>0.20</inf> GalnP quantum dot vertical microcavity laser. , 2009, , .		4
170	Polarization fine structure and enhanced single-photon emission of self-assembled lateral InGaAs quantum dot molecules embedded in a planar microcavity. Journal of Applied Physics, 2009, 105, 122408.	2.5	12
171	Pulsed layer growth of AllnGaN nanostructures. Physica Status Solidi C: Current Topics in Solid State Physics, 2008, 5, 1491-1494.	0.8	2
172	Red to orange electroluminescence from InP/AlGaInP quantum dots at room temperature. Journal of Crystal Growth, 2008, 310, 5098-5101.	1.5	6
173	Increased single-photon emission from InP/AlGaInP quantum dots grown on AlGaAs distributed Bragg reflectors. Journal of Crystal Growth, 2008, 310, 4818-4820.	1.5	4
174	Growth of red InP/GaInP quantum dots on a low density InAs/GaAs island seed layer by MOVPE. Journal of Crystal Growth, 2008, 310, 5089-5092.	1.5	1
175	Non-resonant tunneling in single pairs of vertically stacked asymmetric InP/GaInP quantum dots. Physica E: Low-Dimensional Systems and Nanostructures, 2008, 40, 1958-1960.	2.7	2
176	Influence of the Dark Exciton State on the Optical and Quantum Optical Properties of Single Quantum Dots. Physical Review Letters, 2008, 101, 146402.	7.8	40
177	Electrically pumped single-photon emission in the visible spectral range up to 80 K. Optics Express, 2008, 16, 12771.	3.4	38
178	Red single-photon emission from an InPâ^•GaInP quantum dot embedded in a planar monolithic microcavity. Applied Physics Letters, 2008, 92, .	3.3	13
179	Red high-temperature AlGaInP-VCSEL. , 2007, , .		1
180	Electronic shell structure and carrier dynamics of high aspect ratioInPsingle quantum dots. Physical Review B, 2007, 75, .	3.2	31

#	Article	IF	CITATIONS
181	Nonresonant tunneling in single asymmetric pairs of vertically stackedInPquantum dots. Physical Review B, 2007, 76, .	3.2	16
182	Temperature Dependent Photoluminescence Measurements of Single InP Quantum Dots. AIP Conference Proceedings, 2007, , .	0.4	0
183	Band-gap measurements of direct and indirect semiconductors using monochromated electrons. Physical Review B, 2007, 75, .	3.2	103
184	Time- and locally resolved photoluminescence of semipolar GalnNâ-GaN facet light emitting diodes. Applied Physics Letters, 2007, 90, 171123.	3.3	20
185	Regions of Different Confinement in Low-Dimensional AlylnxGa1â^'xâ^'yN Quantum Structures. Advances in OptoElectronics, 2007, 2007, 1-6.	0.6	3
186	Red to green photoluminescence of InP-quantum dots in InP. Journal of Crystal Growth, 2007, 298, 595-598.	1.5	25
187	Green photoluminescence of single InP-quantum dots grown on InP/AlInP distributed Bragg reflectors. Journal of Crystal Growth, 2007, 298, 599-602.	1.5	0
188	Vertical asymmetric double quantum dots. Journal of Crystal Growth, 2007, 298, 603-606.	1.5	9
189	Analog Modulation of 650-nm VCSELs. IEEE Photonics Technology Letters, 2006, 18, 583-585.	2.5	1
190	Investigations on local Ga and In incorporation of GalnN quantum wells on facets of selectively grown GaN stripes. Physica Status Solidi C: Current Topics in Solid State Physics, 2006, 3, 1587-1590.	0.8	9
191	Carrier dynamics in site-controlled Ga1–xInxN quantum dots. Physica Status Solidi C: Current Topics in Solid State Physics, 2006, 3, 2060-2064.	0.8	1
192	Structural and optical characterization of AlylnxGa1â \in "x â \in "yN quantum dots. Physica Status Solidi C: Current Topics in Solid State Physics, 2006, 3, 2073-2077.	0.8	2
193	Selective growth of GalnN quantum dot structures. Physica E: Low-Dimensional Systems and Nanostructures, 2005, 26, 133-137.	2.7	6
194	Evidence of different confinement regimes in site-controlled pyramidal InGaN structures. Physica Status Solidi (B): Basic Research, 2005, 242, R97-R99.	1.5	8
195	Red VCSEL for automotive applications. , 2005, , .		5
196	Near-red emission from site-controlled pyramidal InGaN quantum dots. Applied Physics Letters, 2005, 87, 163121.	3.3	41
197	Single-photon emission from a type-B InPâ^•GalnP quantum dot. Journal of Applied Physics, 2005, 98, 093522.	2.5	27
198	Red light VCSEL for high-temperature applications. , 2004, 5594, 141.		0

#	Article	IF	CITATIONS
199	Analysis of the modulation behavior of red VCSELs. , 2004, 5597, 102.		2
200	Study of as deposited metal contacts for n-SiC. Physica Status Solidi C: Current Topics in Solid State Physics, 2004, 1, 2533-2536.	0.8	1
201	Growth of self-assembled AllnGaN quantum dots by MOVPE. Journal of Crystal Growth, 2004, 272, 186-191.	1.5	2
202	Selective growth of GaInN quantum dot structures. Journal of Crystal Growth, 2004, 272, 204-210.	1.5	13
203	Characterisation of quaternary AllnGaN thick layers and quantum wells grown by MOVPE. Journal of Crystal Growth, 2004, 272, 386-392.	1.5	13
204	Red VCSEL for high-temperature applications. Journal of Crystal Growth, 2004, 272, 549-554.	1.5	15
205	Optical studies of GalnP/GaP quantum dots. Journal of Luminescence, 2003, 102-103, 1-6.	3.1	5
206	Time-resolved and single dot spectroscopy of type II InP/GaInP quantum dots. Physica Status Solidi C: Current Topics in Solid State Physics, 2003, 0, 1197-1200.	0.8	6
207	Optical studies of GaxIn1-xP/Ga0.5In0.5P quantum dots. Physica Status Solidi C: Current Topics in Solid State Physics, 2003, 0, 1225-1228.	0.8	3
208	Comparison of the material properties of GalnN structures grown with ammonia and dimethyl-hydrazine as nitrogen precursors. Physica Status Solidi C: Current Topics in Solid State Physics, 2003, 0, 2145-2149.	0.8	0
209	160°C pulsed laser operation of AlGaInP-based vertical-cavity surface-emitting lasers. Electronics Letters, 2003, 39, 1654.	1.0	6
210	Red surface emitters: powerful and fast., 2003,,.		1
211	In-Redistribution in a GalnN Quantum Well upon Thermal Annealing. Physica Status Solidi (B): Basic Research, 2002, 234, 738-741.	1.5	4
212	Photoluminescence Studies on InGaN/GaN Quantum Dots. Physica Status Solidi A, 2002, 192, 91-96.	1.7	2
213	Laterally Coupled InGaN/GaN DFB Laser Diodes. Physica Status Solidi A, 2002, 192, 301-307.	1.7	11
214	Initial Experiments to Obtain Self-Assembled GaInN Quantum Islands by MOVPE. Physica Status Solidi A, 2002, 192, 412-416.	1.7	4
215	Electric-Field Tuning of Spin-Dependent Exciton-Exciton Interactions in Coupled Quantum Wells. Physical Review Letters, 1999, 83, 2433-2436.	7.8	19
216	Spin-Dependent Exciton-Exciton Interaction in Quantum Wells under an Electric Field. Physica Status Solidi (B): Basic Research, 1999, 215, 223-228.	1.5	0

#	Article	IF	CITATIONS
217	Optically Induced Stark Shift in DFB Resonators. Physica Status Solidi (B): Basic Research, 1999, 215, 269-273.	1.5	O
218	Optical investigations on InP and GaInP quantum dots. , 0, , .		2
219	Technology transfer of (Ga)InP-quantum dots. , 0, , .		O
220	Quantum Optical Studies of Single Coupled Quantum Dot Pairs., 0,, 33-51.		0