Matt Kaeberlein

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3023207/publications.pdf

Version: 2024-02-01

237 papers

23,964 citations

64 h-index 146 g-index

304 all docs

304 docs citations

304 times ranked 19957 citing authors

#	Article	lF	CITATIONS
1	Transcriptional silencing and longevity protein Sir2 is an NAD-dependent histone deacetylase. Nature, 2000, 403, 795-800.	13.7	3,142
2	mTOR is a key modulator of ageing and age-related disease. Nature, 2013, 493, 338-345.	13.7	1,390
3	Regulation of Yeast Replicative Life Span by TOR and Sch9 in Response to Nutrients. Science, 2005, 310, 1193-1196.	6.0	1,171
4	Calorie restriction extends Saccharomyces cerevisiae lifespan by increasing respiration. Nature, 2002, 418, 344-348.	13.7	950
5	Extension of chronological life span in yeast by decreased TOR pathway signaling. Genes and Development, 2006, 20, 174-184.	2.7	840
6	Substrate-specific Activation of Sirtuins by Resveratrol. Journal of Biological Chemistry, 2005, 280, 17038-17045.	1.6	677
7	Histone H4 lysine 16 acetylation regulates cellular lifespan. Nature, 2009, 459, 802-807.	13.7	580
8	Absence of effects of Sir2 overexpression on lifespan in C. elegans and Drosophila. Nature, 2011, 477, 482-485.	13.7	574
9	Replicative and Chronological Aging in Saccharomyces cerevisiae. Cell Metabolism, 2012, 16, 18-31.	7.2	509
10	mTOR Inhibition Alleviates Mitochondrial Disease in a Mouse Model of Leigh Syndrome. Science, 2013, 342, 1524-1528.	6.0	437
11	Yeast Life Span Extension by Depletion of 60S Ribosomal Subunits Is Mediated by Gcn4. Cell, 2008, 133, 292-302.	13.5	436
12	Sir2-Independent Life Span Extension by Calorie Restriction in Yeast. PLoS Biology, 2004, 2, e296.	2.6	396
13	Lessons on longevity from budding yeast. Nature, 2010, 464, 513-519.	13.7	382
14	Elimination of Replication Block Protein Fob1 Extends the Life Span of Yeast Mother Cells. Molecular Cell, 1999, 3, 447-455.	4.5	380
15	A molecular mechanism of chronological aging in yeast. Cell Cycle, 2009, 8, 1256-1270.	1.3	320
16	Transient rapamycin treatment can increase lifespan and healthspan in middle-aged mice. ELife, 2016, 5, .	2.8	315
17	The TOR pathway comes of age. Biochimica Et Biophysica Acta - General Subjects, 2009, 1790, 1067-1074.	1.1	300
18	Rapamycin Reverses Elevated mTORC1 Signaling in Lamin A/C–Deficient Mice, Rescues Cardiac and Skeletal Muscle Function, and Extends Survival. Science Translational Medicine, 2012, 4, 144ra103.	5.8	300

#	Article	IF	Citations
19	Lifespan extension in Caenorhabditis elegans by complete removal of food. Aging Cell, 2006, 5, 487-494.	3.0	294
20	Dietary restriction and lifespan: Lessons from invertebrate models. Ageing Research Reviews, 2017, 39, 3-14.	5.0	267
21	Healthy aging: The ultimate preventative medicine. Science, 2015, 350, 1191-1193.	6.0	262
22	Dietary restriction suppresses proteotoxicity and enhances longevity by an <i>hsfâ€1</i> â€dependent mechanism in <i>Caenorhabditis elegans</i> . Aging Cell, 2008, 7, 394-404.	3.0	233
23	Proteasomal Regulation of the Hypoxic Response Modulates Aging in <i>C. elegans</i> . Science, 2009, 324, 1196-1198.	6.0	220
24	A Comprehensive Analysis of Replicative Lifespan in 4,698 Single-Gene Deletion Strains Uncovers Conserved Mechanisms of Aging. Cell Metabolism, 2015, 22, 895-906.	7.2	212
25	Elevated Proteasome Capacity Extends Replicative Lifespan in Saccharomyces cerevisiae. PLoS Genetics, 2011, 7, e1002253.	1.5	202
26	H3K36 methylation promotes longevity by enhancing transcriptional fidelity. Genes and Development, 2015, 29, 1362-1376.	2.7	196
27	Recent Developments in Yeast Aging. PLoS Genetics, 2007, 3, e84.	1.5	188
28	Quantitative evidence for conserved longevity pathways between divergent eukaryotic species. Genome Research, 2008, 18, 564-570.	2.4	182
29	Resveratrol Rescues SIRT1-Dependent Adult Stem Cell Decline and Alleviates Progeroid Features in Laminopathy-Based Progeria. Cell Metabolism, 2012, 16, 738-750.	7.2	177
30	Activation of the mitochondrial unfolded protein response does not predict longevity in Caenorhabditis elegans. Nature Communications, 2014, 5, 3483.	5.8	175
31	Ribosome Deficiency Protects Against ER Stress in <i>Saccharomyces cerevisiae</i> . Genetics, 2012, 191, 107-118.	1.2	170
32	Increased Life Span due to Calorie Restriction in Respiratory-Deficient Yeast. PLoS Genetics, 2005, 1, e69.	1.5	169
33	Genes determining yeast replicative life span in a long-lived genetic background. Mechanisms of Ageing and Development, 2005, 126, 491-504.	2.2	153
34	Measuring Caenorhabditis elegans Life Span on Solid Media. Journal of Visualized Experiments, 2009, , .	0.2	143
35	Molecular mechanisms underlying genotypeâ€dependent responses to dietary restriction. Aging Cell, 2013, 12, 1050-1061.	3.0	137
36	High Osmolarity Extends Life Span in Saccharomyces cerevisiae by a Mechanism Related to Calorie Restriction. Molecular and Cellular Biology, 2002, 22, 8056-8066.	1.1	135

#	Article	IF	CITATIONS
37	Measuring Replicative Life Span in the Budding Yeast. Journal of Visualized Experiments, 2009, , .	0.2	134
38	A randomized controlled trial to establish effects of short-term rapamycin treatment in 24 middle-aged companion dogs. GeroScience, 2017, 39, 117-127.	2.1	125
39	<i>Saccharomyces cerevisiae MPT5</i> and <i>SSD1</i> Function in Parallel Pathways to Promote Cell Wall Integrity. Genetics, 2002, 160, 83-95.	1.2	125
40	Rapamycin and Alzheimer's disease: Time for a clinical trial?. Science Translational Medicine, 2019, 11, .	5.8	121
41	Shortest-Path Network Analysis Is a Useful Approach toward Identifying Genetic Determinants of Longevity. PLoS ONE, 2008, 3, e3802.	1.1	119
42	Age- and calorie-independent life span extension from dietary restriction by bacterial deprivation in Caenorhabditis elegans. BMC Developmental Biology, 2008, 8, 49.	2.1	116
43	A Method for High-Throughput Quantitative Analysis of Yeast Chronological Life Span. Journals of Gerontology - Series A Biological Sciences and Medical Sciences, 2008, 63, 113-121.	1.7	111
44	The dog aging project: translational geroscience in companion animals. Mammalian Genome, 2016, 27, 279-288.	1.0	111
45	Cell nonautonomous activation of flavin-containing monooxygenase promotes longevity and health span. Science, 2015, 350, 1375-1378.	6.0	109
46	How healthy is the healthspan concept?. GeroScience, 2018, 40, 361-364.	2.1	106
47	Longevity and aging. F1000prime Reports, 2013, 5, 5.	5.9	103
48	Sirtuin-independent effects of nicotinamide on lifespan extension from calorie restriction in yeast. Aging Cell, 2006, 5, 505-514.	3.0	100
49	Sir2 and calorie restriction in yeast: A skeptical perspective. Ageing Research Reviews, 2007, 6, 128-140.	5.0	99
50	A Natural Polymorphism in rDNA Replication Origins Links Origin Activation with Calorie Restriction and Lifespan. PLoS Genetics, 2013, 9, e1003329.	1.5	97
51	HIFâ€1 modulates longevity and healthspan in a temperatureâ€dependent manner. Aging Cell, 2011, 10, 318-326.	3.0	96
52	Modulating mTOR in Aging and Health. Interdisciplinary Topics in Gerontology, 2015, 40, 107-127.	3.6	96
53	Biochemical Genetic Pathways that Modulate Aging in Multiple Species: Figure 1 Cold Spring Harbor Perspectives in Medicine, 2015, 5, a025114.	2.9	96
54	The Short Life Span of <i>Saccharomyces cerevisiae sgs1</i> and <i>srs2</i> Mutants Is a Composite of Normal Aging Processes and Mitotic Arrest Due to Defective Recombination. Genetics, 2001, 157, 1531-1542.	1.2	96

#	Article	IF	Citations
55	The Sensitivity of Yeast Mutants to Oleic Acid Implicates the Peroxisome and Other Processes in Membrane Function. Genetics, 2007, 175, 77-91.	1.2	95
56	WormFarm: a quantitative control and measurement device toward automated <i>Caenorhabditis elegans</i> aging analysis. Aging Cell, 2013, 12, 398-409.	3.0	90
57	The Ribosomal Protein Rpl22 Controls Ribosome Composition by Directly Repressing Expression of Its Own Paralog, Rpl22l1. PLoS Genetics, 2013, 9, e1003708.	1.5	89
58	A genomic analysis of chronological longevity factors in budding yeast. Cell Cycle, 2011, 10, 1385-1396.	1.3	87
59	Resveratrol and rapamycin: are they antiâ€eging drugs?. BioEssays, 2010, 32, 96-99.	1.2	83
60	Dose-dependent effects of mTOR inhibition on weight and mitochondrial disease in mice. Frontiers in Genetics, 2015, 6, 247.	1.1	83
61	Enhanced Longevity by Ibuprofen, Conserved in Multiple Species, Occurs in Yeast through Inhibition of Tryptophan Import. PLoS Genetics, 2014, 10, e1004860.	1.5	80
62	Large-scale identification in yeast of conserved ageing genes. Mechanisms of Ageing and Development, 2005, 126, 17-21.	2.2	78
63	Antiaging diets: Separating fact from fiction. Science, 2021, 374, eabe7365.	6.0	75
64	Lifespan Extension Conferred by Endoplasmic Reticulum Secretory Pathway Deficiency Requires Induction of the Unfolded Protein Response. PLoS Genetics, 2014, 10, e1004019.	1.5	74
65	Transcription errors induce proteotoxic stress and shorten cellular lifespan. Nature Communications, 2015, 6, 8065.	5.8	73
66	Restoration of senescent human diploid fibroblasts by modulation of the extracellular matrix. Aging Cell, 2011, 10, 148-157.	3.0	70
67	Inactivation of Yeast Isw2 Chromatin Remodeling Enzyme Mimics Longevity Effect of Calorie Restriction via Induction of Genotoxic Stress Response. Cell Metabolism, 2014, 19, 952-966.	7.2	69
68	Quantifying Yeast Chronological Life Span by Outgrowth of Aged Cells. Journal of Visualized Experiments, 2009, , .	0.2	68
69	Microfluidic technologies for yeast replicative lifespan studies. Mechanisms of Ageing and Development, 2017, 161, 262-269.	2.2	65
70	Caffeine extends life span, improves healthspan, and delays age-associated pathology in Caenorhabditis elegans. Longevity & Healthspan, 2012, 1, 9.	6.7	64
71	Dietary restriction by bacterial deprivation increases life span in wild-derived nematodes. Experimental Gerontology, 2008, 43, 130-135.	1.2	63
72	pH neutralization protects against reduction in replicative lifespan following chronological aging in yeast. Cell Cycle, 2012, 11, 3087-3096.	1.3	63

#	Article	IF	Citations
73	Life-Span Extension From Hypoxia in Caenorhabditis elegans Requires Both HIF-1 and DAF-16 and Is Antagonized by SKN-1. Journals of Gerontology - Series A Biological Sciences and Medical Sciences, 2013, 68, 1135-1144.	1.7	63
74	Comment on "HST2 Mediates SIR2-Independent Life-Span Extension by Calorie Restriction". Science, 2006, 312, 1312-1312.	6.0	62
75	Stress profiling of longevity mutants identifies <scp>Afg3</scp> as a mitochondrial determinant of cytoplasmic <scp>mRNA</scp> translation and aging. Aging Cell, 2013, 12, 156-166.	3.0	62
76	The SAGA Histone Deubiquitinase Module Controls Yeast Replicative Lifespan via Sir2 Interaction. Cell Reports, 2014, 8, 477-486.	2.9	62
77	Why Is Aging Conserved and What Can We Do about It?. PLoS Biology, 2015, 13, e1002131.	2.6	62
78	The hypoxia-inducible factor HIF-1 functions as both a positive and negative modulator of aging. Biological Chemistry, 2010, 391, 1131-7.	1.2	61
79	Composition and Acidification of the Culture Medium Influences Chronological Aging Similarly in Vineyard and Laboratory Yeast. PLoS ONE, 2011, 6, e24530.	1.1	61
80	Rapamycin treatment attenuates age-associated periodontitis in mice. GeroScience, 2017, 39, 457-463.	2.1	61
81	Hot topics in aging research: protein translation and TOR signaling, 2010. Aging Cell, 2011, 10, 185-190.	3.0	60
82	Age-dependent deterioration of nuclear pore assembly in mitotic cells decreases transport dynamics. ELife, $2019,8,.$	2.8	60
83	Rapamycin rejuvenates oral health in aging mice. ELife, 2020, 9, .	2.8	59
84	Genome-wide identification of conserved longevity genes in yeast and worms. Mechanisms of Ageing and Development, 2007, 128, 106-111.	2.2	58
85	Yeast replicative aging: a paradigm for defining conserved longevity interventions. FEMS Yeast Research, 2014, 14, 148-159.	1.1	58
86	Midlife gene expressions identify modulators of aging through dietary interventions. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, E1201-9.	3.3	57
87	Rapamycin enhances survival in a <i>Drosophila</i> model of mitochondrial disease. Oncotarget, 2016, 7, 80131-80139.	0.8	57
88	A Drosophila model of mitochondrial disease caused by a complex I mutation that uncouples proton pumping from electron transfer. DMM Disease Models and Mechanisms, 2014, 7, 1165-74.	1.2	56
89	Dietary restriction and mitochondrial function link replicative and chronological aging in Saccharomyces cerevisiae. Experimental Gerontology, 2013, 48, 1006-1013.	1.2	54
90	The mitochondrial unfolded protein response and increased longevity: Cause, consequence, or correlation?. Experimental Gerontology, 2014, 56, 142-146.	1.2	53

#	Article	IF	Citations
91	Sir2 deletion prevents lifespan extension in 32 longâ€lived mutants. Aging Cell, 2011, 10, 1089-1091.	3.0	52
92	Saccharomyces cerevisiae SSD1-V Confers Longevity by a Sir2p-Independent Mechanism. Genetics, 2004, 166, 1661-1672.	1.2	51
93	YODA: Software to facilitate high-throughput analysis of chronological life span, growth rate, and survival in budding yeast. BMC Bioinformatics, 2010, 11, 141.	1.2	51
94	mTOR Inhibition: From Aging to Autism and Beyond. Scientifica, 2013, 2013, 1-17.	0.6	51
95	Systematic analysis of asymmetric partitioning of yeast proteome between mother and daughter cells reveals â∈œaging factors―and mechanism of lifespan asymmetry. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, 11977-11982.	3.3	51
96	Mutations in Saccharomyces cerevisiae Gene SIR2 Can Have Differential Effects on In Vivo Silencing Phenotypes and In Vitro Histone Deacetylation Activity. Molecular Biology of the Cell, 2002, 13, 1427-1438.	0.9	50
97	Genome-Wide RNAi Longevity Screens in Caenorhabditis elegans. Current Genomics, 2012, 13, 508-518.	0.7	49
98	Desexing Dogs: A Review of the Current Literature. Animals, 2019, 9, 1086.	1.0	49
99	Life span extension by glucose restriction is abrogated by methionine supplementation: Cross-talk between glucose and methionine and implication of methionine as a key regulator of life span. Science Advances, 2020, 6, eaba1306.	4.7	49
100	Hot topics in aging research: protein translation, 2009. Aging Cell, 2009, 8, 617-623.	3.0	48
101	Quantitative evidence for early life fitness defects from 32 longevity-associated alleles in yeast. Cell Cycle, 2011, 10, 156-165.	1.3	47
102	The Enigmatic Role of Sir2 in Aging. Cell, 2005, 123, 548-550.	13.5	46
103	A midlife longevity drug?. Nature, 2009, 460, 331-332.	13.7	46
104	Flavin-containing monooxygenases in aging and disease: Emerging roles for ancient enzymes. Journal of Biological Chemistry, 2017, 292, 11138-11146.	1.6	46
105	The Biology of Aging. Veterinary Pathology, 2016, 53, 291-298.	0.8	45
106	Rapamycin in aging and disease: maximizing efficacy while minimizing side effects. Oncotarget, 2016, 7, 44876-44878.	0.8	45
107	Protein translation, 2007. Aging Cell, 2007, 6, 731-734.	3.0	44
108	mTOR inhibitors may benefit kidney transplant recipients with mitochondrial diseases. Kidney International, 2019, 95, 455-466.	2.6	44

#	Article	IF	Citations
109	An open science study of ageing in companion dogs. Nature, 2022, 602, 51-57.	13.7	43
110	Grapes versus gluttony. Nature, 2006, 444, 280-281.	13.7	42
111	Translational geroscience: A new paradigm for 21st century medicine. Translational Medicine of Aging, 2017, 1, 1-4.	0.6	41
112	Transaldolase inhibition impairs mitochondrial respiration and induces a starvation-like longevity response in Caenorhabditis elegans. PLoS Genetics, 2017, 13, e1006695.	1.5	41
113	Regulation of mRNA Translation as a Conserved Mechanism of Longevity Control. Advances in Experimental Medicine and Biology, 2010, 694, 14-29.	0.8	40
114	Oral health in geroscience: animal models and the aging oral cavity. GeroScience, 2018, 40, 1-10.	2.1	37
115	Rapamycin and Ageing: When, for How Long, and How Much?. Journal of Genetics and Genomics, 2014, 41, 459-463.	1.7	36
116	WormBot, an open-source robotics platform for survival and behavior analysis in C. elegans. GeroScience, 2019, 41, 961-973.	2.1	36
117	Syringaresinol protects against hypoxia/reoxygenation-induced cardiomyocytes injury and death by destabilization of HIF- $1\hat{1}\pm$ in a FOXO3-dependent mechanism. Oncotarget, 2015, 6, 43-55.	0.8	36
118	AGEID: a database of aging genes and interventions. Mechanisms of Ageing and Development, 2002, 123, 1115-1119.	2.2	34
119	Age-associated vulval integrity is an important marker of nematode healthspan. Age, 2016, 38, 419-431.	3.0	34
120	The potential of rapalogs to enhance resilience against SARS-CoV-2 infection and reduce the severity of COVID-19. The Lancet Healthy Longevity, 2021, 2, e105-e111.	2.0	34
121	Preserving Youth: Does Rapamycin Deliver?. Science Translational Medicine, 2013, 5, 211fs40.	5.8	33
122	Regional metabolic signatures in the Ndufs4(KO) mouse brain implicate defective glutamate/l±-ketoglutarate metabolism in mitochondrial disease. Molecular Genetics and Metabolism, 2020, 130, 118-132.	0.5	33
123	The hypoxic response and aging. Cell Cycle, 2009, 8, 2324-2324.	1.3	32
124	An energetics perspective on geroscience: mitochondrial protonmotive force and aging. GeroScience, 2021, 43, 1591-1604.	2.1	32
125	A physicochemical perspective of aging from single-cell analysis of pH, macromolecular and organellar crowding in yeast. ELife, 2020, 9, .	2.8	32
126	Protein translation, 2008. Aging Cell, 2008, 7, 777-782.	3.0	31

#	Article	IF	Citations
127	Genetic screen identifies adaptive aneuploidy as a key mediator of ER stress resistance in yeast. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, 9586-9591.	3.3	31
128	Aging Is RSKy Business. Science, 2009, 326, 55-56.	6.0	30
129	Spermidine surprise for a long life. Nature Cell Biology, 2009, 11, 1277-1278.	4.6	30
130	Lifespan of companion dogs seen in three independent primary care veterinary clinics in the United States. Canine Medicine and Genetics, 2020, 7, 7.	1.4	30
131	Asymptomatic heart valve dysfunction in healthy middle-aged companion dogs and its implications for cardiac aging. GeroScience, 2017, 39, 43-50.	2.1	29
132	In vivo measurements reveal a single 5′-intron is sufficient to increase protein expression level in Caenorhabditis elegans. Scientific Reports, 2019, 9, 9192.	1.6	29
133	Inactivating histone deacetylase HDA promotes longevity by mobilizing trehalose metabolism. Nature Communications, 2021, 12, 1981.	5.8	29
134	Aneuploidy shortens replicative lifespan in <i>Saccharomyces cerevisiae</i> . Aging Cell, 2016, 15, 317-324.	3.0	28
135	A Genetic Screen for Zygotic Embryonic Lethal Mutations Affecting Cuticular Morphology in the Wasp Nasonia vitripennis. Genetics, 2000, 154, 1213-1229.	1.2	28
136	End-of-life cell cycle arrest contributes to stochasticity of yeast replicative aging. FEMS Yeast Research, 2013, 13, 267-276.	1.1	27
137	Rejuvenation: It's in Our Blood. Cell Metabolism, 2014, 20, 2-4.	7.2	27
138	PKC downregulation upon rapamycin treatment attenuates mitochondrial disease. Nature Metabolism, 2020, 2, 1472-1481.	5.1	26
139	Sorbitol treatment extends lifespan and induces the osmotic stress response in Caenorhabditis elegans. Frontiers in Genetics, 2015, 6, 316.	1.1	25
140	Genetic interaction with temperature is an important determinant of nematode longevity. Aging Cell, 2017, 16, 1425-1429.	3.0	25
141	Chaperone biomarkers of lifespan and penetrance track the dosages of many other proteins. Nature Communications, 2019, 10, 5725.	5.8	25
142	Using Yeast to Discover the Fountain of Youth. Science of Aging Knowledge Environment: SAGE KE, 2001, 2001, 1pe-1.	0.9	25
143	Tether mutations that restore function and suppress pleiotropic phenotypes of the ⟨i⟩C. elegans isp-1(qm150)⟨/i⟩ Rieske iron–sulfur protein. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, E6148-57.	3.3	24
144	Geroscience in the Age of COVID-19. , 2020, 11, 725.		24

#	Article	IF	CITATIONS
145	Loss of vacuolar acidity results in iron-sulfur cluster defects and divergent homeostatic responses during aging in Saccharomyces cerevisiae. GeroScience, 2020, 42, 749-764.	2.1	24
146	Translational control of one-carbon metabolism underpins ribosomal protein phenotypes in cell division and longevity. ELife, 2020, 9, .	2.8	24
147	Yeast as a model to understand the interaction between genotype and the response to calorie restriction. FEBS Letters, 2012, 586, 2868-2873.	1.3	23
148	Evolution of natural lifespan variation and molecular strategies of extended lifespan in yeast. ELife, 2021, 10, .	2.8	23
149	A Role for SIRT1 in the Hypoxic Response. Molecular Cell, 2010, 38, 779-780.	4.5	22
150	A system to identify inhibitors of mTOR signaling using high-resolution growth analysis in Saccharomyces cerevisiae. GeroScience, 2017, 39, 419-428.	2.1	22
151	DNA damage checkpoint activation impairs chromatin homeostasis and promotes mitotic catastrophe during aging. ELife, 2019, 8, .	2.8	22
152	The Ongoing Saga of Sirtuins and Aging. Cell Metabolism, 2008, 8, 4-5.	7.2	21
153	Buffering the pH of the culture medium does not extend yeast replicative lifespan. F1000Research, 2013, 2, 216.	0.8	21
154	Canine Cognitive Dysfunction (CCD) scores correlate with amyloid beta 42 levels in dog brain tissue. GeroScience, 2021, 43, 2379-2386.	2.1	21
155	PMT1 deficiency enhances basal UPR activity and extends replicative lifespan of Saccharomyces cerevisiae. Age, 2015, 37, 9788.	3.0	20
156	Translational geroscience: From invertebrate models to companion animal and human interventions. Translational Medicine of Aging, 2018, 2, 15-29.	0.6	20
157	Hypertrophy and senescence factors in yeast aging. A reply to Bilinski etÂal FEMS Yeast Research, 2012, 12, 269-270.	1.1	19
158	<i>Saccharomyces cerevisiae SSD1-V</i> Confers Longevity by a Sir2p-Independent Mechanism. Genetics, 2004, 166, 1661-1672.	1.2	19
159	Defining molecular basis for longevity traits in natural yeast isolates. Npj Aging and Mechanisms of Disease, 2015, 1, .	4.5	18
160	CAN1 Arginine Permease Deficiency Extends Yeast Replicative Lifespan via Translational Activation of Stress Response Genes. Cell Reports, 2017, 18, 1884-1892.	2.9	18
161	A review of the biomedical innovations for healthy longevity. Aging, 2017, 9, 7-25.	1.4	18
162	The paths of mortality: How understanding the biology of aging can help explain systems behavior of single cells. Current Opinion in Systems Biology, 2018, 8, 25-31.	1.3	18

#	Article	IF	CITATIONS
163	A Genomic Approach to Yeast Chronological Aging. Methods in Molecular Biology, 2009, 548, 101-114.	0.4	18
164	Does resveratrol activate yeast Sir2 <i>in vivo</i> ?. Aging Cell, 2007, 6, 415-416.	3.0	17
165	Hepatic S6K1 Partially Regulates Lifespan of Mice with Mitochondrial Complex I Deficiency. Frontiers in Genetics, 2017, 8, 113.	1.1	17
166	A toolkit for DNA assembly, genome engineering and multicolor imaging for C. elegans. Translational Medicine of Aging, 2018, 2, 1-10.	0.6	17
167	Defining the impact of mutation accumulation on replicative lifespan in yeast using cancer-associated mutator phenotypes. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 3062-3071.	3.3	17
168	The antifungal plant defensin HsAFP1 induces autophagy, vacuolar dysfunction and cell cycle impairment in yeast. Biochimica Et Biophysica Acta - Biomembranes, 2020, 1862, 183255.	1.4	16
169	Cell-to-cell variation in gene expression and the aging process. GeroScience, 2021, 43, 181-196.	2.1	16
170	Elevated MTORC1 signaling and impaired autophagy. Autophagy, 2013, 9, 108-109.	4.3	15
171	Composition of Caenorhabditis elegans extracellular vesicles suggests roles in metabolism, immunity, and aging. GeroScience, 2020, 42, 1133-1145.	2.1	15
172	Genome-Wide Analysis of Yeast Aging. Sub-Cellular Biochemistry, 2011, 57, 251-289.	1.0	14
173	A healthy diet for stem cells. Nature, 2012, 486, 477-478.	13.7	14
174	Environmental Canalization of Life Span and Gene Expression in Caenorhabditis elegans. Journals of Gerontology - Series A Biological Sciences and Medical Sciences, 2017, 72, 1033-1037.	1.7	14
175	New functional and biophysical insights into the mitochondrial Rieske iron-sulfur protein from genetic suppressor analysis in (i) C. elegans (i) Worm, 2016, 5, e1174803.	1.0	13
176	Latest advances in aging research and drug discovery. Aging, 2019, 11, 9971-9981.	1.4	13
177	Single-gene deletions that restore mating competence to diploid yeast. FEMS Yeast Research, 2008, 8, 276-286.	1.1	12
178	A prion accelerates proliferation at the expense of lifespan. ELife, 2021, 10, .	2.8	12
179	Reactivation of RNA metabolism underlies somatic restoration after adult reproductive diapause in C. elegans. ELife, 2018, 7, .	2.8	12
180	Electrophysiological Measures of Aging Pharynx Function in C. elegans Reveal Enhanced Organ Functionality in Older, Long-lived Mutants. Journals of Gerontology - Series A Biological Sciences and Medical Sciences, 2019, 74, 1173-1179.	1.7	11

#	Article	IF	Citations
181	Longevity Genomics Across Species. Current Genomics, 2007, 8, 73-78.	0.7	10
182	Fertile Waters for Aging Research. Cell, 2015, 160, 814-815.	13.5	10
183	Age and Physical Activity Levels in Companion Dogs: Results From the Dog Aging Project. Journals of Gerontology - Series A Biological Sciences and Medical Sciences, 2022, 77, 1986-1993.	1.7	10
184	A new chronological survival assay in mammalian cell culture. Cell Cycle, 2012, 11, 201-202.	1.3	9
185	Nar1 deficiency results in shortened lifespan and sensitivity to paraquat that is rescued by increased expression of mitochondrial superoxide dismutase. Mechanisms of Ageing and Development, 2014, 138, 53-58.	2.2	9
186	MicroRNA transcriptome analysis identifies miR-365 as a novel negative regulator of cell proliferation in Zmpste24 -deficient mouse embryonic fibroblasts. Mutation Research - Fundamental and Molecular Mechanisms of Mutagenesis, 2015, 777, 69-78.	0.4	9
187	Time for a New Strategy in the War on Alzheimer's Disease. The Public Policy and Aging Report, 2019, 29, 119-122.	0.8	9
188	Phenotypic and Genotypic Consequences of CRISPR/Cas9 Editing of the Replication Origins in the rDNA of <i>Saccharomyces cerevisiae</i> . Genetics, 2019, 213, 229-249.	1.2	9
189	Evidence that C/EBP- \hat{l}^2 LAP Increases Fat Metabolism and Protects Against Diet-Induced Obesity in Response to mTOR Inhibition. Frontiers in Aging, 2021, 2, .	1.2	9
190	Application of High-Throughput Technologies to Aging-Related Research. , 2006, , 109-119.		9
191	Genome-wide approaches to understanding human ageing. Human Genomics, 2006, 2, 422-8.	1.4	8
192	A molecular age barrier. Nature, 2008, 454, 709-710.	13.7	8
193	An inexpensive microscopy system for microfluidic studies in budding yeast. Translational Medicine of Aging, 2019, 3, 52-56.	0.6	8
194	Aging-Related Research in the "-omics" Age. Science of Aging Knowledge Environment: SAGE KE, 2004, 2004, pe39-pe39.	0.9	8
195	The MDT-15 Subunit of Mediator Interacts with Dietary Restriction to Modulate Longevity and Fluoranthene Toxicity in Caenorhabditis elegans. PLoS ONE, 2011, 6, e28036.	1.1	8
196	Research to Promote Longevity and Health Span in Companion Dogs: A Pediatric Perspective. American Journal of Bioethics, 2018, 18, 64-65.	0.5	7
197	The NDUFS4 Knockout Mouse: A Dual Threat Model of Childhood Mitochondrial Disease and Normative Aging. Methods in Molecular Biology, 2021, 2277, 143-155.	0.4	7
198	Inter-organ regulation of haem homeostasis. Nature Cell Biology, 2017, 19, 756-758.	4.6	6

#	Article	IF	Citations
199	It is Time to Embrace 21st-Century Medicine. The Public Policy and Aging Report, 2019, 29, 111-115.	0.8	6
200	RTB101 and immune function in the elderly: Interpreting an unsuccessful clinical trial. Translational Medicine of Aging, 2020, 4, 32-34.	0.6	6
201	Pterocarpus marsupium extract extends replicative lifespan in budding yeast. GeroScience, 2021, 43, 2595-2609.	2.1	6
202	Once-daily feeding is associated with better health in companion dogs: results from the Dog Aging Project. GeroScience, 2022, 44, 1779-1790.	2.1	6
203	Lifetime prevalence of malignant and benign tumours in companion dogs: Crossâ€sectional analysis of Dog Aging Project baseline survey. Veterinary and Comparative Oncology, 2022, 20, 797-804.	0.8	6
204	Searching for the elusive mitochondrial longevity signal in C. elegans. Worm, 2014, 3, e959404.	1.0	5
205	DDS promotes longevity through a microbiome-mediated starvation signal. Translational Medicine of Aging, 2019, 3, 64-69.	0.6	5
206	Rb analog Whi5 regulates G1 to S transition and cell size but not replicative lifespan in budding yeast. Translational Medicine of Aging, 2019, 3, 104-108.	0.6	5
207	Evidence that conserved essential genes are enriched for pro-longevity factors. GeroScience, 2022, 44, 1995-2006.	2.1	5
208	Oxygen and Aging. Annual Review of Gerontology and Geriatrics, 2014, 34, 59-91.	0.5	4
209	Trajectories of Aging: How Systems Biology in Yeast Can Illuminate Mechanisms of Personalized Aging. Proteomics, 2020, 20, 1800420.	1.3	4
210	Anti-ageing effects of protein restriction unpacked. Nature, 2021, 589, 357-358.	13.7	4
211	Purification and Analysis of Caenorhabditis elegans Extracellular Vesicles. Journal of Visualized Experiments, 2020, , .	0.2	4
212	Meeting Report: Aging Research and Drug Discovery. Aging, 2022, 14, 530-543.	1.4	4
213	UV-Photoconversion of Ethosuximide from a Longevity-Promoting Compound to a Potent Toxin. PLoS ONE, 2013, 8, e82543.	1.1	3
214	The Role of TOR Signaling in Aging. , 2010, , 147-161.		3
215	Longevity and Aging in Budding Yeast. , 2006, , 207-217.		2
216	Chemical Warfare in the Battle of the Sexes. Science, 2014, 343, 491-492.	6.0	2

#	Article	IF	CITATIONS
217	Cross species application of quantitative neuropathology assays developed for clinical Alzheimer's disease samples. Pathobiology of Aging & Age Related Diseases, 2019, 9, 1657768.	1.1	2
218	Ageing: A midlife longevity drug?. Nature, 0, , .	13.7	2
219	Replicative Life Span Analysis in Budding Yeast. Methods in Molecular Biology, 2014, 1205, 341-357.	0.4	2
220	Comparative Genetics of Aging. , 2011, , 215-241.		1
221	Trinations aging symposium. Mechanisms of Ageing and Development, 2011, 132, 348-352.	2.2	1
222	Deciphering the role of natural variation in age-related protein homeostasis. BMC Biology, 2013, 11, 102.	1.7	1
223	New insights into cell non-autonomous mechanisms of theC. eleganshypoxic response. Worm, 2016, 5, e1176823.	1.0	1
224	Reasons for Exclusion of Apparently Healthy Mature Adult and Senior Dogs From a Clinical Trial. Frontiers in Veterinary Science, 2021, 8, 651698.	0.9	1
225	University of Washington Nathan Shock Center: innovation to advance aging research. GeroScience, 2021, 43, 2161-2165.	2.1	1
226	Generation and characterization of a tractable C. elegans model of tauopathy. GeroScience, 2021, 43, 2621-2631.	2.1	1
227	A new era for research into aging. ELife, 2021, 10, .	2.8	1
228	Searching for the elusive mitochondrial longevity signal in C. elegans. Worm, 2014, 3, e29868.	1.0	1
229	Increased life span due to calorie restriction in respiratory deficient yeast. PLoS Genetics, 2005, preprint, e69.	1.5	1
230	Editorial [(Hot Topic Genomics and Genetics of Aging). Current Genomics, 2012, 13, 499-499.	0.7	0
231	The Hypoxic Response and Aging. , 2016, , 133-159.		0
232	AGING AND MITOCHONDRIAL DISEASE: SHARED MECHANISMS AND THERAPIES?. Innovation in Aging, 2019, 3, \$395-\$395.	0.0	0
233	The AGE Presents Introduction to Geroscience video lecture series. GeroScience, 2021, 43, 1697-1701.	2.1	0
234	Microarray Analysis of Gene Expression Changes in Aging. , 2005, , 295-333.		O

#	Article	IF	CITATIONS
235	Histone H4 lysineâ€16 acetylation regulates cellular lifespan. FASEB Journal, 2010, 24, 662.2.	0.2	0
236	Yeast Aging Proteome Unveiled a Novel Aging Regulation Pathway Mediated by the Chromatin Remodeling Complex ISW2. FASEB Journal, 2012, 26, 965.2.	0.2	0
237	Mitochondrial Protonmotive Force Regulates Aging and Longevity in C. elegans. Free Radical Biology and Medicine, 2022, 180, s20.	1.3	0