Lauren A Mitchell

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3023052/publications.pdf

Version: 2024-02-01

45 papers

2,325 citations

257450 24 h-index 254184 43 g-index

47 all docs

47
docs citations

47 times ranked

1245 citing authors

#	Article	IF	CITATIONS
1	Enforced Layer-by-Layer Stacking of Energetic Salts towards High-Performance Insensitive Energetic Materials. Journal of the American Chemical Society, 2015, 137, 10532-10535.	13.7	306
2	Energetic Salts Based on 3,5-Bis(dinitromethyl)-1,2,4-triazole Monoanion and Dianion: Controllable Preparation, Characterization, and High Performance. Journal of the American Chemical Society, 2016, 138, 7500-7503.	13.7	167
3	Potassium 4,4′â€Bis(dinitromethyl)â€3,3′â€azofurazanate: A Highly Energetic 3D Metal–Organic Framew a Promising Primary Explosive. Angewandte Chemie - International Edition, 2016, 55, 5565-5567.	vork as	152
4	Taming of 3,4-Di(nitramino)furazan. Journal of the American Chemical Society, 2015, 137, 15984-15987.	13.7	146
5	Azido and Tetrazolo 1,2,4,5â€Tetrazine Nâ€Oxides. Angewandte Chemie - International Edition, 2017, 56, 3575-3578.	13.8	126
6	Mechanistic Insights into the Alternating Copolymerization of Epoxides and Cyclic Anhydrides Using a (Salph)AlCl and Iminium Salt Catalytic System. Journal of the American Chemical Society, 2017, 139, 15222-15231.	13.7	125
7	3,6â€Dinitropyrazolo[4,3â€ <i>c</i>)]pyrazoleâ€Based Multipurpose Energetic Materials through Versatile Nâ€Functionalization Strategies. Angewandte Chemie - International Edition, 2016, 55, 12895-12897.	13.8	96
8	Energetic compounds consisting of 1,2,5- and 1,3,4-oxadiazole rings. Journal of Materials Chemistry A, 2015, 3, 23143-23148.	10.3	77
9	Syntheses and Promising Properties of Dense Energetic 5,5′â€Dinitraminoâ€3,3′â€azoâ€1,2,4â€oxadiazole Salts. Angewandte Chemie - International Edition, 2016, 55, 3200-3203.	e and Its	75
10	Energetic Trinitro―and Fluorodinitroethyl Ethers of 1,2,4,5â€Tetrazines. Angewandte Chemie - International Edition, 2016, 55, 8666-8669.	13.8	74
11	<i>N</i> -Oxides light up energetic performances: synthesis and characterization of dinitraminobisfuroxans and their salts. Journal of Materials Chemistry A, 2016, 4, 8969-8973.	10.3	72
12	Energetic <i>N</i> â€Nitramino/ <i>N</i> â€Oxylâ€Functionalized Pyrazoles with Versatile π–π Stacking: Structure–Property Relationships of Highâ€Performance Energetic Materials. Angewandte Chemie - International Edition, 2016, 55, 14409-14411.	13.8	70
13	Energetic aminated-azole assemblies from intramolecular and intermolecular N–Hâ√O and N–Hâ√N hydrogen bonds. Chemical Communications, 2016, 52, 8123-8126.	4.1	60
14	Enhancing Energetic Properties and Sensitivity by Incorporating Amino and Nitramino Groups into a 1,2,4â€Oxadiazole Building Block. Angewandte Chemie - International Edition, 2016, 55, 1147-1150.	13.8	58
15	N-functionalized nitroxy/azido fused-ring azoles as high-performance energetic materials. Journal of Materials Chemistry A, 2016, 4, 7430-7436.	10.3	55
16	Connecting energetic nitropyrazole and aminotetrazole moieties with N,N′-ethylene bridges: A promising approach for fine tuning energetic properties. Journal of Materials Chemistry A, 2016, 4, 9220-9228.	10.3	54
17	Enhanced Luminance of Electrochemical Cells with a Rationally Designed Ionic Iridium Complex and an Ionic Additive. ACS Applied Materials & Samp; Interfaces, 2016, 8, 8888-8892.	8.0	54
18	Câ€"N bonded energetic biheterocyclic compounds with good detonation performance and high thermal stability. Journal of Materials Chemistry A, 2016, 4, 3879-3885.	10.3	51

#	Article	IF	Citations
19	Asymmetric $\langle i\rangle N\langle i\rangle, \langle i\rangle N\langle i\rangle$ as e^2 -ethylene-bridged azole-based compounds: Two way control of the energetic properties of compounds. Journal of Materials Chemistry A, 2016, 4, 9931-9940.	10.3	47
20	Bridged bisnitramide-substituted furazan-based energetic materials. Journal of Materials Chemistry A, 2016, 4, 16961-16967.	10.3	44
21	Ammonia Oxide as a Building Block for Highâ€Performance and Insensitive Energetic Materials. Angewandte Chemie - International Edition, 2017, 56, 5894-5898.	13.8	35
22	Comparative Study of Various Pyrazoleâ€based Anions: A Promising Family of Ionic Derivatives as Insensitive Energetic Materials. Chemistry - an Asian Journal, 2017, 12, 378-384.	3.3	35
23	Small Cationâ€Based Highâ€Performance Energetic Nitraminofurazanates. Chemistry - A European Journal, 2016, 22, 11846-11853.	3.3	33
24	Electrophilic iodination: a gateway to high iodine compounds and energetic materials. Dalton Transactions, 2016, 45, 13827-13833.	3.3	25
25	Polymeric Materials for the Separation of $\langle i \rangle f \langle i \rangle$ -Elements Utilizing Carbamoylmethylphosphine Oxide Chelating Ligands. ACS Macro Letters, 2016, 5, 1100-1103.	4.8	24
26	Syntheses and Promising Properties of Dense Energetic 5,5′â€Dinitraminoâ€3,3′â€azoâ€1,2,4â€oxadiazole Salts. Angewandte Chemie, 2016, 128, 3252-3255.	and Its	22
27	5-(4-Azidofurazan-3-yl)-1-hydroxytetrazole and its derivatives: from green primary to secondary explosives. New Journal of Chemistry, 2019, 43, 12684-12689.	2.8	22
28	Facile Synthesis of Spirocyclic Lactams from Î ² -Keto Carboxylic Acids. Organic Letters, 2015, 17, 3070-3073.	4.6	21
29	Mono- and diiodo-1,2,3-triazoles and their mono nitro derivatives. Dalton Transactions, 2016, 45, 9684-9688.	3.3	20
30	3,6â€Dinitropyrazolo[4,3â€ <i>c</i>]pyrazoleâ€Based Multipurpose Energetic Materials through Versatile Nâ€Functionalization Strategies. Angewandte Chemie, 2016, 128, 13087-13089.	2.0	20
31	Why So Slow? Mechanistic Insights from Studies of a Poor Catalyst for Polymerization of $\hat{l}\mu$ -Caprolactone. Inorganic Chemistry, 2017, 56, 725-728.	4.0	20
32	Azido and Tetrazolo 1,2,4,5â€Tetrazine Nâ€Oxides. Angewandte Chemie, 2017, 129, 3629-3632.	2.0	19
33	Enhancing Energetic Properties and Sensitivity by Incorporating Amino and Nitramino Groups into a 1,2,4â€Oxadiazole Building Block. Angewandte Chemie, 2016, 128, 1159-1162.	2.0	18
34	Energetic Trinitro―and Fluorodinitroethyl Ethers of 1,2,4,5â€Tetrazines. Angewandte Chemie, 2016, 128, 8808-8811.	2.0	17
35	From FOX-7 to H-FOX to insensitive energetic materials with hypergolic properties. Chemical Communications, 2016, 52, 7668-7671.	4.1	17
36	Energetic <i>N</i> â€Nitramino/ <i>N</i> â€Oxylâ€Functionalized Pyrazoles with Versatile π–π Stacking: Structure–Property Relationships of Highâ€Performance Energetic Materials. Angewandte Chemie, 2016, 128, 14621-14623.	2.0	16

#	Article	IF	Citations
37	Dual-catalytic decarbonylation of fatty acid methyl esters to form olefins. Chemical Communications, 2018, 54, 7669-7672.	4.1	12
38	A Halogenâ€Free Green High Energy Density Oxidizer from Hâ€FOX. European Journal of Organic Chemistry, 2019, 2019, 3142-3145.	2.4	10
39	Incorporation of Thieno[3,2â€∢i>b⟨/i>]thiophene Moieties as Novel Electropolymerizable Groups in a Conducting Metallopolymer and Study of the Effect on Photostability. Macromolecular Rapid Communications, 2015, 36, 665-670.	3.9	8
40	Ammonia Oxide as a Building Block for Highâ€Performance and Insensitive Energetic Materials. Angewandte Chemie, 2017, 129, 5988-5992.	2.0	8
41	A comparison of 3,4,6a,7,10,10a-hexahydro-7,10-epoxypyrimido[2,1-a]isoindol-6(2H)-one and 2-(2-aminoethyl)-3a,4,7,7a-tetrahydro-1H-4,7-epoxyisoindole-1,3(2H)-dione: structural and reactivity differences of two homologous tricyclic imides. Acta Crystallographica Section C: Crystal Structure Communications, 2013, 69, 638-641.	0.4	4
42	5-Phenyl-1,2,5-dithiazepane. Acta Crystallographica Section E: Structure Reports Online, 2014, 70, o285-o285.	0.2	1
43	6-Bromo-N-(6-bromopyridin-2-yl)-N-[4-(2,3-dihydrothieno[3,4-b][1,4]dioxin-5-yl)phenyl]pyridin-2-amine. Acta Crystallographica Section E: Structure Reports Online, 2014, 70, 0797-0797.	0.2	0
44	4-(2,3-Dihydrothieno[3,4-b][1,4]dioxin-5-yl)aniline. Acta Crystallographica Section E: Structure Reports Online, 2014, 70, o803-o803.	0.2	0
45	(E)-4-[7-(2,3-Dihydrothieno[3,4-b][1,4]dioxin-5-yl)-2,1,3-benzothiadiazol-4-yl]-2-[(neopentylimino)methyl]phenol. Acta Crystallographica Section E: Structure Reports Online, 2014, 70, 0848-0849.	0.2	0