
Jaap Willem Back

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3022784/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Tryptic Shaving of <i>Staphylococcus aureus</i> Unveils Immunodominant Epitopes on the Bacterial Cell Surface. Journal of Proteome Research, 2020, 19, 2997-3010.	3.7	13
2	The chemokine receptor CCR7 is a promising target for rheumatoid arthritis therapy. Cellular and Molecular Immunology, 2019, 16, 791-799.	10.5	42
3	Differential epitope recognition in the immunodominant staphylococcal antigen A of Staphylococcus aureus by mouse versus human IgG antibodies. Scientific Reports, 2017, 7, 8141.	3.3	12
4	Calreticulin as a novel B-cell receptor antigen in chronic lymphocytic leukemia. Haematologica, 2017, 102, e394-e396.	3.5	10
5	Active Immunization with an Octa-Valent Staphylococcus aureus Antigen Mixture in Models of S. aureus Bacteremia and Skin Infection in Mice. PLoS ONE, 2015, 10, e0116847.	2.5	17
6	HIV-1 neutralizing antibodies induced by native-like envelope trimers. Science, 2015, 349, aac4223.	12.6	482
7	The Stem of Vesicular Stomatitis Virus G Can Be Replaced With the HIV-1 Env Membrane-Proximal External Region Without Loss of G Function or Membrane-Proximal External Region Antigenic Properties. AIDS Research and Human Retroviruses, 2014, 30, 1130-1144.	1.1	5
8	Boosting of HIV-1 Neutralizing Antibody Responses by a Distally Related Retroviral Envelope Protein. Journal of Immunology, 2014, 192, 5802-5812.	0.8	4
9	Distinct Roles of Phenol-Soluble Modulins in Spreading of Staphylococcus aureus on Wet Surfaces. Applied and Environmental Microbiology, 2013, 79, 886-895.	3.1	90
10	Structure-Based Design for High-Hanging Vaccine Fruits. Advances in Immunology, 2012, 114, 33-50.	2.2	7
11	Selecting highly structure-specific antibodies using structured synthetic mimics of the cystine knot protein sclerostin. Protein Engineering, Design and Selection, 2012, 25, 251-259.	2.1	4
12	Helical peptide arrays for lead identification and interaction site mapping. Analytical Biochemistry, 2011, 417, 149-155.	2.4	11
13	Requirement of the <i>agr</i> Locus for Colony Spreading of <i>Staphylococcus aureus</i> . Journal of Bacteriology, 2011, 193, 1267-1272.	2.2	61
14	Proteome-wide Alterations in Escherichia coli Translation Rates upon Anaerobiosis. Molecular and Cellular Proteomics, 2010, 9, 2508-2516.	3.8	25
15	Identification and Quantitation of Newly Synthesized Proteins in Escherichia coli by Enrichment of Azidohomoalanine-labeled Peptides with Diagonal Chromatography. Molecular and Cellular Proteomics, 2009, 8, 1599-1611.	3.8	28
16	Selective Enrichment of Azide-Containing Peptides from Complex Mixtures. Journal of Proteome Research, 2009, 8, 3702-3711.	3.7	96
17	A structure for the yeast prohibitin complex: Structure prediction and evidence from chemical crosslinking and mass spectrometry. Protein Science, 2009, 11, 2471-2478.	7.6	151
18	Disulfide Bond Structure and Domain Organization of Yeast β(1,3)-Glucanosyltransferases Involved in Cell Wall Biogenesis. Journal of Biological Chemistry, 2008, 283, 18553-18565.	3.4	33

JAAP WILLEM BACK

#	Article	IF	CITATIONS
19	An Aptly Positioned Azido Group in the Spacer of a Protein Cross-Linker for Facile Mapping of Lysines in Close Proximity. ChemBioChem, 2007, 8, 1281-1292.	2.6	42
20	Computer-assisted mass spectrometric analysis of naturally occurring and artificially introduced cross-links in proteins and protein complexes. FEBS Journal, 2006, 273, 281-291.	4.7	54
21	Transition-Metal Catalysis as a Tool for the Covalent Labeling of Proteins. Angewandte Chemie - International Edition, 2006, 45, 1841-1843.	13.8	28
22	Mild and Chemoselective Peptide-Bond Cleavage of Peptides and Proteins at Azido Homoalanine. Angewandte Chemie - International Edition, 2005, 44, 7946-7950.	13.8	30
23	The Soluble NAD ⁺ -Reducing [NiFe]-Hydrogenase from <i>Ralstonia eutropha</i> H16 Consists of Six Subunits and Can Be Specifically Activated by NADPH. Journal of Bacteriology, 2005, 187, 3122-3132.	2.2	101
24	Comparative proteomics of human endothelial cell caveolae and rafts using two-dimensional gel electrophoresis and mass spectrometry. Electrophoresis, 2004, 25, 156-172.	2.4	110
25	Re-Engineering the Genetic Code: Combining Molecular Biology and Organic Chemistry ChemInform, 2004, 35, no.	0.0	Ο
26	Dendritic phosphoramidite ligands in Rh-catalysed asymmetric hydrogenations. Tetrahedron Letters, 2004, 45, 5999-6002.	1.4	33
27	Re-Engineering the Genetic Code: Combining Molecular Biology and Organic Chemistry. Angewandte Chemie - International Edition, 2003, 42, 5926-5928.	13.8	21
28	Chemical Cross-linking and Mass Spectrometry for Protein Structural Modeling. Journal of Molecular Biology, 2003, 331, 303-313.	4.2	223
29	Conserved regions of protein disulfide isomerase are targeted by natural IgA antibodies in humans. International Immunology, 2002, 14, 1291-1301.	4.0	27
30	Mass Spectrometric Identification of Isoforms of PR Proteins in Xylem Sap of Fungus-Infected Tomato. Plant Physiology, 2002, 130, 904-917.	4.8	201
31	Identification of Cross-Linked Peptides for Protein Interaction Studies Using Mass Spectrometry and 180 Labeling. Analytical Chemistry, 2002, 74, 4417-4422.	6.5	131
32	Protein disulfide isomerase ofToxoplasma gondiiis targeted by mucosal IgA antibodies in humans. FEBS Letters, 2002, 522, 104-108.	2.8	33
33	A new crosslinker for mass spectrometric analysis of the quaternary structure of protein complexes. Journal of the American Society for Mass Spectrometry, 2001, 12, 222-227.	2.8	75
34	Molecular and Biochemical Characterization of Rat ε-N-Trimethyllysine Hydroxylase, the First Enzyme of Carnitine Biosynthesis. Journal of Biological Chemistry, 2001, 276, 33512-33517.	3.4	46
35	Prohibitins act as a membrane-bound chaperone for the stabilization of mitochondrial proteins. EMBO Journal, 2000, 19, 2444-2451.	7.8	467
36	In Vivo Functional Analysis of the Human Mitochondrial DNA Polymerase POLG Expressed in Cultured Human Cells. Journal of Biological Chemistry, 2000, 275, 24818-24828.	3.4	166