
Jing Shi

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3022366/publications.pdf Version: 2024-02-01

LINC SHI

#	Article	IF	CITATIONS
1	N, O-codoped hierarchical porous carbons derived from algae for high-capacity supercapacitors and battery anodes. Journal of Materials Chemistry A, 2016, 4, 5973-5983.	10.3	256
2	Sulfur-nitrogen rich carbon as stable high capacity potassium ion battery anode: Performance and storage mechanisms. Energy Storage Materials, 2020, 27, 212-225.	18.0	235
3	Biomass derived hierarchical porous carbons as high-performance anodes for sodium-ion batteries. Electrochimica Acta, 2016, 188, 103-110.	5.2	207
4	Asymmetric Trilayer Allâ€Polymer Dielectric Composites with Simultaneous High Efficiency and High Energy Density: A Novel Design Targeting Advanced Energy Storage Capacitors. Advanced Functional Materials, 2021, 31, 2100280.	14.9	179
5	Two-dimensional biomass-derived carbon nanosheets and MnO/carbon electrodes for high-performance Li-ion capacitors. Journal of Materials Chemistry A, 2017, 5, 15243-15252.	10.3	132
6	Sulfur-Rich Graphene Nanoboxes with Ultra-High Potassiation Capacity at Fast Charge: Storage Mechanisms and Device Performance. ACS Nano, 2021, 15, 1652-1665.	14.6	132
7	Self-doped carbon architectures with heteroatoms containing nitrogen, oxygen and sulfur as high-performance anodes for lithium- and sodium-ion batteries. Electrochimica Acta, 2017, 251, 396-406.	5.2	104
8	Extremely high-rate aqueous supercapacitor fabricated using doped carbon nanoflakes with large surface area and mesopores at near-commercial mass loading. Nano Research, 2017, 10, 1767-1783.	10.4	103
9	Cobalt Oxide-Carbon Nanosheet Nanoarchitecture as an Anode for High-Performance Lithium-Ion Battery. ACS Applied Materials & Interfaces, 2015, 7, 2882-2890.	8.0	101
10	Microstructure and electrochemical behavior of cerium conversion coating modified with silane agent on magnesium substrates. Applied Surface Science, 2016, 376, 161-171.	6.1	88
11	Oxygen Engineering Enables N-Doped Porous Carbon Nanofibers as Oxygen Reduction/Evolution Reaction Electrocatalysts for Flexible Zinc–Air Batteries. ACS Catalysis, 2022, 12, 4002-4015.	11.2	68
12	Metal-organic framework derived N-doped CNT@ porous carbon for high-performance sodium- and potassium-ion storage. Electrochimica Acta, 2019, 319, 541-551.	5.2	63
13	Nitrogen-doped porous carbons derived from a natural polysaccharide for multiple energy storage devices. Sustainable Energy and Fuels, 2018, 2, 381-391.	4.9	43
14	Facile preparation of ultralight porous carbon hollow nanoboxes for electromagnetic wave absorption. Ceramics International, 2021, 47, 28014-28020.	4.8	40
15	Effect of surface modification on high-surface-area carbon nanosheets anode in sodium ion battery. Microporous and Mesoporous Materials, 2016, 227, 1-8.	4.4	39
16	Tuning the morphology and structure of nanocarbons with activating agents for ultrafast ionic liquid-based supercapacitors. Journal of Power Sources, 2017, 361, 182-194.	7.8	39
17	Lithium Ion Capacitor with Identical Carbon Electrodes Yields 6 s Charging and 100â€ ⁻ 000 Cycles Stability with 1% Capacity Fade. ACS Sustainable Chemistry and Engineering, 2019, 7, 2867-2877.	6.7	38
18	Sustainable nitrogen-doped carbon electrodes for use in high-performance supercapacitors and Li-ion capacitors. Sustainable Energy and Fuels, 2020, 4, 1789-1800.	4.9	38

Jing Shi

#	Article	IF	CITATIONS
19	Electrospun hetero-CoP/FeP embedded in porous carbon nanofibers: enhanced Na ⁺ kinetics and specific capacity. Nanoscale, 2020, 12, 24477-24487.	5.6	36
20	Sulfur and nitrogen codoped cyanoethyl celluloseâ€derived carbon with superior gravimetric and volumetric capacity for potassium ion storage. , 2022, 4, 986-1001.		36
21	Large-scale doping-engineering enables boron/nitrogen dual-doped porous carbon for high-performance zinc ion capacitors. Rare Metals, 2022, 41, 2505-2516.	7.1	35
22	Balanced mesoporous nickle cobaltite-graphene and doped carbon electrodes for high-performance asymmetric supercapacitor. Chemical Engineering Journal, 2017, 326, 401-410.	12.7	34
23	Boosting pseudocapacitive charge storage in <i>in situ</i> functionalized carbons with a high surface area for high-energy asymmetric supercapacitors. Sustainable Energy and Fuels, 2018, 2, 2314-2324.	4.9	34
24	Nitrogen and Sulfur Co-doped Mesoporous Carbon for Sodium Ion Batteries. ACS Applied Nano Materials, 2019, 2, 5643-5654.	5.0	33
25	Dual-doped hierarchical porous carbon derived from biomass for advanced supercapacitors and lithium ion batteries. RSC Advances, 2019, 9, 32382-32394.	3.6	32
26	High-energy sodium-ion capacitor assembled by hierarchical porous carbon electrodes derived from Enteromorpha. Journal of Materials Science, 2018, 53, 6763-6773.	3.7	31
27	High potassium ion storage capacity with long cycling stability of sustainable oxygen-rich carbon nanosheets. Nanoscale, 2021, 13, 2389-2398.	5.6	30
28	All-cellulose-based quasi-solid-state supercapacitor with nitrogen and boron dual-doped carbon electrodes exhibiting high energy density and excellent cyclic stability. Green Energy and Environment, 2023, 8, 1091-1101.	8.7	30
29	N,P-Doped Carbon-Based Freestanding Electrodes Enabled by Cellulose Nanofibers for Superior Asymmetric Supercapacitors. ACS Applied Energy Materials, 2021, 4, 2327-2338.	5.1	26
30	Influence of N2/Ar Flow Ratio on Microstructure and Properties of the AlCrSiN Coatings Deposited by High-Power Impulse Magnetron Sputtering. Coatings, 2018, 8, 3.	2.6	24
31	T-Nb ₂ O ₅ embedded carbon nanosheets with superior reversibility and rate capability as an anode for high energy Li-ion capacitors. Sustainable Energy and Fuels, 2019, 3, 1055-1065.	4.9	23
32	Spatially Confined "Edgeâ€ŧoâ€Edge―Strategy for Achieving Compact Na ⁺ /K ⁺ Storage: Constructing Heteroâ€Ni/Ni ₃ S ₂ in Densified Carbons. Advanced Functional Materials, 2022, 32, .	14.9	23
33	Two-dimensional SnO ₂ anchored biomass-derived carbon nanosheet anode for high-performance Li-ion capacitors. RSC Advances, 2021, 11, 10018-10026.	3.6	20
34	Sorghum core-derived carbon sheets as electrodes for a lithium-ion capacitor. RSC Advances, 2017, 7, 17178-17183.	3.6	19
35	Nitrogen functionalized carbon nanocages optimized as high-performance anodes for sodium ion storage. Electrochimica Acta, 2019, 304, 192-201.	5.2	19
36	A new strategy for achieving high K ⁺ storage capacity with fast kinetics: realizing covalent sulfur-rich carbon by phosphorous doping. Nanoscale, 2021, 13, 4911-4920.	5.6	17

Jing Shi

#	Article	IF	CITATIONS
37	High-Performance Sodium-Ion Capacitor Constructed by Well-Matched Dual-Carbon Electrodes from a Single Biomass. ACS Sustainable Chemistry and Engineering, 0, , .	6.7	14
38	One-pot synthesis of nanosized MnO incorporated into N-doped carbon nanosheets for high performance lithium storage. Journal of Alloys and Compounds, 2022, 902, 163827.	5.5	14
39	Ni/Al ₂ O ₃ /epoxy high-k composites with ultralow nickel content towards high-performance dielectric applications. RSC Advances, 2016, 6, 43429-43435.	3.6	13
40	Carbon coated 3D Nb ₂ O ₅ hollow nanospheres with superior performance as an anode for high energy Li-ion capacitors. Sustainable Energy and Fuels, 2020, 4, 4868-4877.	4.9	12
41	Microstructural evolution and growth kinetics of interfacial reaction layers in SUS430/Ti3SiC2 diffusion bonded joints using a Ni interlayer. Ceramics International, 2022, 48, 4484-4496.	4.8	12
42	Coupling core–shell Bi@Void@TiO ₂ heterostructures into carbon nanofibers for achieving fast potassium storage and long cycling stability. Journal of Materials Chemistry A, 2022, 10, 12908-12920.	10.3	12
43	Metal Organic Frameworks Enabled Multifunctional Poly(ethylene oxide)-Based Solid Polymer Electrolytes with High Lithium-Ion Conductivity and Excellent Stability. ACS Applied Energy Materials, 2022, 5, 8973-8981.	5.1	12
44	High-rate sodium storage performance enabled using hollow Co3O4 nanoparticles anchored in porous carbon nanofibers anode. Journal of Alloys and Compounds, 2021, 868, 159262.	5.5	11
45	Nitrate Salt Assisted Fabrication of Highly N-Doped Carbons for High-Performance Sodium Ion Capacitors. ACS Applied Energy Materials, 0, , .	5.1	9
46	PPy coated nanoflower like CuCo ₂ O ₄ based on in situ growth of nanoporous copper for high-performance supercapacitor electrodes. Nanotechnology, 2022, 33, 155606.	2.6	7
47	Polymer salt-derived carbon-based nanomaterials for high-performance hybrid Li-ion capacitors. Journal of Materials Science, 2019, 54, 7811-7822.	3.7	6
48	Interconnected honeycomb-like carbon with rich nitrogen/sulfur doping for stable potassium ion storage. Electrochimica Acta, 2022, 424, 140596.	5.2	6
49	Evolution of "adsorption–insertion―K+ storage behaviors in flower-like carbons with tunable heteroatom doping and graphitic structures. Sustainable Energy and Fuels, 0, , .	4.9	4
50	Improving the electron transfer in the oxygen reduction reaction by N/S co-doping for high-performance of Zn–air batteries. Sustainable Energy and Fuels, 2022, 6, 3383-3393.	4.9	4