
Steve Paterson

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3021269/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Antagonistic coevolution accelerates molecular evolution. Nature, 2010, 464, 275-278.	27.8	492
2	Species Interactions in a Parasite Community Drive Infection Risk in a Wildlife Population. Science, 2010, 330, 243-246.	12.6	461
3	Major histocompatibility complex variation associated with juvenile survival and parasite resistance in a large unmanaged ungulate population (Ovis aries L.). Proceedings of the National Academy of Sciences of the United States of America, 1998, 95, 3714-3719.	7.1	408
4	The diversity-generating benefits of a prokaryotic adaptive immune system. Nature, 2016, 532, 385-388.	27.8	236
5	<i>Pseudomonas aeruginosa</i> Population Diversity and Turnover in Cystic Fibrosis Chronic Infections. American Journal of Respiratory and Critical Care Medicine, 2011, 183, 1674-1679.	5.6	229
6	Running with the Red Queen: the role of biotic conflicts in evolution. Proceedings of the Royal Society B: Biological Sciences, 2014, 281, 20141382.	2.6	225
7	Parallel Compensatory Evolution Stabilizes Plasmids across the Parasitism-Mutualism Continuum. Current Biology, 2015, 25, 2034-2039.	3.9	225
8	The Fasciola hepatica genome: gene duplication and polymorphism reveals adaptation to the host environment and the capacity for rapid evolution. Genome Biology, 2015, 16, 71.	8.8	224
9	The Extracellular Vesicles of the Helminth Pathogen, Fasciola hepatica: Biogenesis Pathways and Cargo Molecules Involved in Parasite Pathogenesis*. Molecular and Cellular Proteomics, 2015, 14, 3258-3273.	3.8	194
10	The Genetic Basis of Inbreeding Avoidance in House Mice. Current Biology, 2007, 17, 2061-2066.	3.9	169
11	Rapid evolution of microbe-mediated protection against pathogens in a worm host. ISME Journal, 2016, 10, 1915-1924.	9.8	165
12	Divergent, Coexisting <i>Pseudomonas aeruginosa</i> Lineages in Chronic Cystic Fibrosis Lung Infections. American Journal of Respiratory and Critical Care Medicine, 2015, 191, 775-785.	5.6	148
13	Characterization and PCR multiplexing of novel highly variable tetranucleotide Atlantic salmon (Salmo salar L.) microsatellites. Molecular Ecology Notes, 2004, 4, 160-162.	1.7	146
14	No evidence for major histocompatibility complex–dependent mating patterns in a free–living ruminant population. Proceedings of the Royal Society B: Biological Sciences, 1997, 264, 1813-1819.	2.6	123
15	Mixed models: getting the best use of parasitological data. Trends in Parasitology, 2003, 19, 370-375.	3.3	122
16	Monitoring SARS-CoV-2 in municipal wastewater to evaluate the success of lockdown measures for controlling COVID-19 in the UK. Water Research, 2021, 200, 117214.	11.3	117
17	Parasite interactions in natural populations: insights from longitudinal data. Parasitology, 2008, 135, 767-781.	1.5	104
18	Temperate phages both mediate and drive adaptive evolution in pathogen biofilms. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, 8266-8271.	7.1	102

#	Article	IF	CITATIONS
19	An Immunological Marker of Tolerance to Infection in Wild Rodents. PLoS Biology, 2014, 12, e1001901.	5.6	89
20	Predicting the Impact of Long-Term Temperature Changes on the Epidemiology and Control of Schistosomiasis: A Mechanistic Model. PLoS ONE, 2008, 3, e1438.	2.5	86
21	Host immune responses are necessary for density dependence in nematode infections. Parasitology, 2002, 125, 283-92.	1.5	84
22	Evidence for balancing selection at the major histocompatibility complex in a free-living ruminant. , 1998, 89, 289-294.		83
23	Genetic Diversity in Cytokines Associated with Immune Variation and Resistance to Multiple Pathogens in a Natural Rodent Population. PLoS Genetics, 2011, 7, e1002343.	3.5	83
24	Local adaptation of a bacterium is as important as its presence in structuring a natural microbial community. Nature Communications, 2016, 7, 12453.	12.8	79
25	Plasmid fitness costs are caused by specific genetic conflicts enabling resolution by compensatory mutation. PLoS Biology, 2021, 19, e3001225.	5.6	79
26	Fasciola hepatica demonstrates high levels of genetic diversity, a lack of population structure and high gene flow: possible implications for drug resistance. International Journal for Parasitology, 2017, 47, 11-20.	3.1	74
27	Baculum morphology predicts reproductive success of male house mice under sexual selection. BMC Biology, 2013, 11, 66.	3.8	70
28	Environmentally coâ€occurring mercury resistance plasmids are genetically and phenotypically diverse and confer variable contextâ€dependent fitness effects. Environmental Microbiology, 2015, 17, 5008-5022.	3.8	68
29	The maintenance of genetic polymorphism in small island populations: large mammals in the Hebrides. Philosophical Transactions of the Royal Society B: Biological Sciences, 1996, 351, 745-752.	4.0	65
30	Refugia and anthelmintic resistance: Concepts and challenges. International Journal for Parasitology: Drugs and Drug Resistance, 2019, 10, 51-57.	3.4	65
31	The Genetic Basis of Kin Recognition in a Cooperatively Breeding Mammal. Current Biology, 2015, 25, 2631-2641.	3.9	63
32	Positive selection inhibits gene mobilization and transfer in soil bacterial communities. Nature Ecology and Evolution, 2017, 1, 1348-1353.	7.8	63
33	Density-dependent immune responses against the gastrointestinal nematode Strongyloides ratti. International Journal for Parasitology, 2007, 37, 1501-1509.	3.1	59
34	The analysis of immunological profiles in wild animals: a case study on immunodynamics in the field vole, <i>Microtus agrestis</i> . Molecular Ecology, 2011, 20, 893-909.	3.9	57
35	Extensive diversification is a common feature of Pseudomonas aeruginosa populations during respiratory infections in cystic fibrosis. Journal of Cystic Fibrosis, 2013, 12, 790-793.	0.7	50
36	Rapid compensatory evolution promotes the survival of conjugative plasmids. Mobile Genetic Elements, 2016, 6, e1179074.	1.8	49

#	Article	IF	CITATIONS
37	The effect of the host immune response on the parasitic nematode Strongyloides ratti. Parasitology, 2004, 128, 661-669.	1.5	48
38	The effect of phage genetic diversity on bacterial resistance evolution. ISME Journal, 2020, 14, 828-836.	9.8	48
39	Adaptation to public goods cheats in <i>Pseudomonas aeruginosa</i> . Proceedings of the Royal Society B: Biological Sciences, 2017, 284, 20171089.	2.6	48
40	A comparison of precipitation and filtration-based SARS-CoV-2 recovery methods and the influence of temperature, turbidity, and surfactant load in urban wastewater. Science of the Total Environment, 2022, 808, 151916.	8.0	47
41	Seasonal host dynamics drive the timing of recurrent epidemics in a wildlife population. Proceedings of the Royal Society B: Biological Sciences, 2009, 276, 1603-1610.	2.6	44
42	Evidence for selection at cytokine loci in a natural population of field voles (<i>Microtus) Tj ETQq0 0 0 rgBT /Ov</i>	erlo <u>ck</u> 10 T	Tf 50 542 Td (a
43	High virulence sub-populations in Pseudomonas aeruginosa long-term cystic fibrosis airway infections. BMC Microbiology, 2017, 17, 30.	3.3	44
44	The immune response during a Strongyloides ratti infection of rats. Parasite Immunology, 2007, 29, 339-346.	1.5	43
45	Bacteriophages Limit the Existence Conditions for Conjugative Plasmids. MBio, 2015, 6, e00586.	4.1	41
46	Genomic diversity of the human intestinal parasite Entamoeba histolytica. Genome Biology, 2012, 13, R38.	9.6	39
47	Detecting genes for variation in parasite burden and immunological traits in a wild population: testing the candidate gene approach. Molecular Ecology, 2013, 22, 757-773.	3.9	39
48	HOST AVAILABILITY AND THE EVOLUTION OF PARASITE LIFE-HISTORY STRATEGIES. Evolution; International Journal of Organic Evolution, 2007, 61, 675-684.	2.3	38
49	Identification of putative markers of triclabendazole resistance by a genome-wide analysis of genetically recombinant <i>Fasciola hepatica</i> . Parasitology, 2013, 140, 1523-1533.	1.5	38
50	Coâ€evolutionary dynamics between a defensive microbe and a pathogen driven by fluctuating selection. Molecular Ecology, 2017, 26, 1778-1789.	3.9	37
51	Experimental evolution of parasite life-history traits in Strongyloides ratti (Nematoda). Proceedings of the Royal Society B: Biological Sciences, 2007, 274, 1467-1474.	2.6	36
52	Sub-inhibitory concentrations of some antibiotics can drive diversification of Pseudomonas aeruginosa populations in artificial sputum medium. BMC Microbiology, 2013, 13, 170.	3.3	35
53	Proteomics and <i>in Silico</i> Approaches To Extend Understanding of the Glutathione Transferase Superfamily of the Tropical Liver Fluke <i>Fasciola gigantica</i> . Journal of Proteome Research, 2012, 11, 5876-5889.	3.7	34
54	Effects of abundance on infection in natural populations: Field voles and cowpox virus. Epidemics, 2009, 1, 35-46.	3.0	29

#	Article	IF	CITATIONS
55	Evidence of Gene Conversion in Genes Encoding the Gal/GalNac Lectin Complex of Entamoeba. PLoS Neglected Tropical Diseases, 2011, 5, e1209.	3.0	27
56	Frontiers in host–parasite ecology and evolution. Molecular Ecology, 2011, 20, 869-871.	3.9	26
57	Draft Genome Assembly of the Poultry Red Mite, <i>Dermanyssus gallinae</i> . Microbiology Resource Announcements, 2018, 7, .	0.6	26
58	Functional consequences of genetic diversity in Strongyloides ratti infections. Proceedings of the Royal Society B: Biological Sciences, 2003, 270, 1023-1032.	2.6	24
59	How do insects react to novel inherited symbionts? A microarray analysis of <i>Drosophila melanogaster</i> response to the presence of natural and introduced <i>Spiroplasma</i> . Molecular Ecology, 2011, 20, 950-958.	3.9	24
60	Transcriptomic response of red grouse to gastroâ€intestinal nematode parasites and testosterone: implications for population dynamics. Molecular Ecology, 2011, 20, 920-931.	3.9	23
61	Rapid evolution and gene expression: a rapidly evolving Mendelian trait that silences field crickets has widespread effects on m <scp>RNA</scp> and protein expression. Journal of Evolutionary Biology, 2016, 29, 1234-1246.	1.7	23
62	Resistance is futile: RNA-sequencing reveals differing responses to bat fungal pathogen in Nearctic Myotis lucifugus and Palearctic Myotis myotis. Oecologia, 2019, 191, 295-309.	2.0	23
63	Wild rodents as a model to discover genes and pathways underlying natural variation in infectious disease susceptibility. Parasite Immunology, 2013, 35, n/a-n/a.	1.5	22
64	Characterisation of a novel panel of polymorphic microsatellite loci for the liver fluke, Fasciola hepatica, using a next generation sequencing approach. Infection, Genetics and Evolution, 2015, 32, 298-304.	2.3	22
65	Conflicting selection alters the trajectory of molecular evolution in a tripartite bacteria–plasmid–phage interaction. Molecular Ecology, 2017, 26, 2757-2764.	3.9	22
66	Genetic Diversity and Gene Family Expansions in Members of the Genus <i>Entamoeba</i> . Genome Biology and Evolution, 2019, 11, 688-705.	2.5	22
67	Profiling G protein-coupled receptors of Fasciola hepatica identifies orphan rhodopsins unique to phylum Platyhelminthes. International Journal for Parasitology: Drugs and Drug Resistance, 2018, 8, 87-103.	3.4	21
68	Identification of novel aspartic proteases from Strongyloides ratti and characterisation of their evolutionary relationships, stage-specific expression and molecular structure. BMC Genomics, 2009, 10, 611.	2.8	20
69	Exploring and Expanding the Fatty-Acid-Binding Protein Superfamily in <i>Fasciola</i> Species. Journal of Proteome Research, 2016, 15, 3308-3321.	3.7	20
70	Immunological Responses Elicited by Different Infection Regimes with Strongyloides ratti. PLoS ONE, 2008, 3, e2509.	2.5	19
71	Effects of Snail Density on Growth, Reproduction and Survival of <i>Biomphalaria alexandrina</i> Exposed to <i>Schistosoma mansoni</i> . Journal of Parasitology Research, 2010, 2010, 1-6.	1.2	19
72	HOW TO MEASURE MATURATION: A COMPARISON OF PROBABILISTIC METHODS USED TO TEST FOR GENOTYPIC VARIATION AND PLASTICITY IN THE DECISION TO MATURE. Evolution; International Journal of Organic Evolution, 2013, 67, 525-538.	2.3	19

#	Article	IF	CITATIONS
73	Transmission and lineage displacement drive rapid population genomic flux in cystic fibrosis airway infections of a Pseudomonas aeruginosa epidemic strain. Microbial Genomics, 2018, 4, .	2.0	19
74	Microarray analysis of gender- and parasite-specific gene transcription in Strongyloides rattiâ [~] †. International Journal for Parasitology, 2008, 38, 1329-1341.	3.1	17
75	Plasmid carriage can limit bacteria–phage coevolution. Biology Letters, 2015, 11, 20150361.	2.3	17
76	From the animal house to the field: Are there consistent individual differences in immunological profile in wild populations of field voles (Microtus agrestis)?. PLoS ONE, 2017, 12, e0183450.	2.5	17
77	DETERMINING THE OPTIMAL DEVELOPMENTAL ROUTE OF STRONGYLOIDES RATTI: AN EVOLUTIONARILY STABLE STRATEGY APPROACH. Evolution; International Journal of Organic Evolution, 2004, 58, 989-1008.	2.3	16
78	Identification of genes responding to nematode infection in red grouse. Molecular Ecology Resources, 2011, 11, 305-313.	4.8	16
79	The Interface Between Epidemiology and Population Genetics. Parasitology Today, 2000, 16, 528-532.	3.0	15
80	Ovine IgA-reactive proteins from Teladorsagia circumcincta infective larvae. International Journal for Parasitology, 2014, 44, 743-750.	3.1	15
81	Inferring infection processes of a parasitic nematode using population genetics. Parasitology, 2000, 120, 185-194.	1.5	14
82	Response of the Strongyloides ratti transcriptome to host immunological environment. International Journal for Parasitology, 2010, 40, 1609-1617.	3.1	14
83	Endemic Hantavirus in Field Voles, Northern England. Emerging Infectious Diseases, 2017, 23, 1033-1035.	4.3	13
84	A candidate tolerance gene identified in a natural population of field voles (<i>Microtus agrestis</i>). Molecular Ecology, 2018, 27, 1044-1052.	3.9	13
85	Transposable temperate phages promote the evolution of divergent social strategies in <i>Pseudomonas aeruginosa</i> populations. Proceedings of the Royal Society B: Biological Sciences, 2019, 286, 20191794.	2.6	13
86	Heterogeneity in the distribution of Strongyloides ratti infective stages among the faecal pellets of rats. Parasitology, 1999, 119, 227-235.	1.5	12
87	Genomic Signatures of Historical Allopatry and Ecological Divergence in an Island Lizard. Genome Biology and Evolution, 2016, 8, 3618-3626.	2.5	12
88	Physiological, but not fitness, effects of two interacting haemoparasitic infections in a wild rodent. International Journal for Parasitology, 2018, 48, 463-471.	3.1	12
89	Transmission, adaptation and geographical spread of the Pseudomonas aeruginosa Liverpool epidemic strain. Microbial Genomics, 2021, 7, .	2.0	12
90	Transcriptome analysis of a parasitic clade V nematode: Comparative analysis of potential molecular anthelmintic targets in Cylicostephanus goldi. International Journal for Parasitology, 2013, 43, 917-927.	3.1	11

#	Article	IF	CITATIONS
91	Offspring development and lifeâ€history variation in a water flea depends upon cloneâ€specific integration of genetic, nonâ€genetic and environmental cues. Functional Ecology, 2017, 31, 1996-2007.	3.6	11
92	Refined analyses suggest that recombination is a minor source of genomic diversity in Pseudomonas aeruginosa chronic cystic fibrosis infections. Microbial Genomics, 2016, 2, e000051.	2.0	11
93	No evidence for specificity between host and parasite genotypes in experimental (Nematoda) infections. International Journal for Parasitology, 2005, 35, 1539-1545.	3.1	10
94	Genome-Wide Changes in Genetic Diversity in a Population of <i>Myotis lucifugus</i> Affected by White-Nose Syndrome. G3: Genes, Genomes, Genetics, 2020, 10, 2007-2020.	1.8	10
95	Pollution induces epigenetic effects that are stably transmitted across multiple generations. Evolution Letters, 2022, 6, 118-135.	3.3	10
96	Polymicrobial infections can select against Pseudomonas aeruginosa mutators because of quorum-sensing trade-offs. Nature Ecology and Evolution, 2022, 6, 979-988.	7.8	10
97	How effective is recognition of siblings on the basis of genotype?. Journal of Evolutionary Biology, 2009, 22, 1875-1881.	1.7	9
98	A transcriptomic investigation of handicap models in sexual selection. Behavioral Ecology and Sociobiology, 2013, 67, 221-234.	1.4	9
99	Evolution of diversity explains the impact of pre-adaptation of a focal species on the structure of a natural microbial community. ISME Journal, 2020, 14, 2877-2889.	9.8	9
100	Resource quality determines the evolution of resistance and its genetic basis. Molecular Ecology, 2020, 29, 4128-4142.	3.9	8
101	The effect of infection history on the fitness of the gastrointestinal nematode Strongyloides ratti. Parasitology, 2009, 136, 567-577.	1.5	6
102	Transcriptional changes during <i><scp>D</scp>aphnia pulex</i> development indicate that the maturation decision resembles a rate more than a threshold. Journal of Evolutionary Biology, 2015, 28, 944-958.	1.7	6
103	Rapid decline of adaptation of <i>Pseudomonas fluorescens</i> to soil biotic environment. Biology Letters, 2022, 18, 20210593.	2.3	6
104	Compost spatial heterogeneity promotes evolutionary diversification of a bacterium. Journal of Evolutionary Biology, 2021, 34, 246-255.	1.7	5
105	USE OF REPEATED MEASURE LINEAR MODELING TO ANALYZE LONGITUDINAL DATA FROM EXPERIMENTAL PARASITE INFECTIONS. Journal of Parasitology, 2001, 87, 969-971.	0.7	4
106	The effect of host heterogeneity and parasite intragenomic interactions on parasite population structure. Proceedings of the Royal Society B: Biological Sciences, 2005, 272, 1647-1653.	2.6	4
107	Microbe Interactions Undermine Predictions—Response. Science, 2011, 331, 145-147.	12.6	4
108	The immunology and ecology of co-infection. Molecular Ecology, 2013, 22, 2603-2604.	3.9	4

7

#	Article	IF	CITATIONS
109	Transcriptome and Secretome Analysis of Intra-Mammalian Life-Stages of Calicophoron daubneyi Reveals Adaptation to a Unique Host Environment. Molecular and Cellular Proteomics, 2021, 20, 100055.	3.8	4
110	Identification and characterisation of 17 polymorphic candidate genes for response to parasitic nematode (Trichostrongylus tenuis) infection in red grouse (Lagopus lagopus scotica). Conservation Genetics Resources, 2015, 7, 23-28.	0.8	3
111	Transcriptome-wide analysis reveals different categories of response to a standardised immune challenge in a wild rodent. Scientific Reports, 2020, 10, 7444.	3.3	3
112	Use of Repeated Measure Linear Modeling to Analyze Longitudinal Data from Experimental Parasite Infections. Journal of Parasitology, 2001, 87, 969.	0.7	0
113	DETERMINING THE OPTIMAL DEVELOPMENTAL ROUTE OF STRONGYLOIDES RATTI: AN EVOLUTIONARILY STABLE STRATEGY APPROACH. Evolution; International Journal of Organic Evolution, 2004, 58, 989.	2.3	0