Paul N Baird

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3020350/publications.pdf

Version: 2024-02-01

184 papers	9,642 citations	47006 47 h-index	48315 88 g-index
P • P • • • • • • • • • • • • • • • • • • •			8
185 all docs	185 docs citations	185 times ranked	10386 citing authors

#	Article	IF	CITATIONS
1	Non-genetic risk factors for keratoconus. Australasian journal of optometry, The, 2023, 106, 362-372.	1.3	4
2	Identification of novel loci influencing refractive error in East Asian populations using an extreme phenotype design. Journal of Genetics and Genomics, 2022, 49, 54-62.	3.9	1
3	Accuracy of Machine Learning Assisted Detection of Keratoconus: A Systematic Review and Meta-Analysis. Journal of Clinical Medicine, 2022, 11, 478.	2.4	8
4	Risk factors and association with severity of keratoconus: the Australian study of Keratoconus. International Ophthalmology, 2021, 41, 891-899.	1.4	15
5	Eye rubbing in the aetiology of keratoconus: a systematic review and meta-analysis. Graefe's Archive for Clinical and Experimental Ophthalmology, 2021, 259, 2057-2067.	1.9	56
6	Binding of Gtf2i-Î2Ĵî transcription factors to the ARMS2 gene leads to increased circulating HTRA1 in AMD patients and inÂvitro. Journal of Biological Chemistry, 2021, 296, 100456.	3.4	8
7	Do Eye Bank Models and Competitive Practice Affect International Cornea Allocation?. Cornea, 2021, 40, 936-941.	1.7	5
8	Determining the willingness of Australians to export their corneas on death. PLoS ONE, 2021, 16, e0246622.	2.5	4
9	A multi-ethnic genome-wide association study implicates collagen matrix integrity and cell differentiation pathways in keratoconus. Communications Biology, 2021, 4, 266.	4.4	36
10	Model Structure Uncertainty in the Characterization and Growth of Geographic Atrophy. Translational Vision Science and Technology, 2021, 10, 2.	2.2	1
11	Evaluation of Shared Genetic Susceptibility to High and Low Myopia and Hyperopia. JAMA Ophthalmology, 2021, 139, 601.	2.5	22
12	Deep Learning Applied to Automated Segmentation of Geographic Atrophy in Fundus Autofluorescence Images. Translational Vision Science and Technology, 2021, 10, 2.	2.2	7
13	Corneal supply and the use of technology to reduce its demand: A review. Clinical and Experimental Ophthalmology, 2021, 49, 1078-1090.	2.6	5
14	Machine learning with a reduced dimensionality representation of comprehensive Pentacam tomography parameters to identify subclinical keratoconus. Computers in Biology and Medicine, 2021, 138, 104884.	7.0	10
15	Examining Corneal Tissue Exportation Fee and Its Impact on Equitable Allocation. Cornea, 2021, Publish Ahead of Print, .	1.7	2
16	Association of Smoking, Alcohol Consumption, Blood Pressure, Body Mass Index, and Glycemic Risk Factors With Age-Related Macular Degeneration. JAMA Ophthalmology, 2021, 139, 1299.	2.5	29
17	Should Donors Consent to Export Their Corneas? Examination of Eye Tissue and Eye Care Sector Opinion. Cornea, 2021, 40, 398-403.	1.7	3
18	Association of Genetic Variation With Keratoconus. JAMA Ophthalmology, 2020, 138, 174.	2.5	34

#	Article	IF	Citations
19	Economic impact of keratoconus using a health expenditure questionnaire: A patient perspective. Clinical and Experimental Ophthalmology, 2020, 48, 287-300.	2.6	15
20	Should Nations With Surplus Donated Corneal Tissue Export to Those Without? A Review of Sector Opinion Through the Example of One Nation—Australia. Cornea, 2020, 39, 1334-1340.	1.7	8
21	Artificial Intelligence Algorithms for Analysis of Geographic Atrophy: A Review and Evaluation. Translational Vision Science and Technology, 2020, 9, 57.	2.2	28
22	Ocular Tissue for Research in Australia: Strategies for Potential Research Utility of Surplus and Transplant-Ineligible Deceased Donations. Translational Vision Science and Technology, 2020, 9, 4.	2.2	4
23	Myopia. Nature Reviews Disease Primers, 2020, 6, 99.	30.5	259
24	Examining the Impact of Corneal Tissue Transnational Activity, and Transplantation, on Import and Export Nations: A Review of the Literature. Cornea, 2020, 39, 795-800.	1.7	9
25	Genome-wide association meta-analysis of corneal curvature identifies novel loci and shared genetic influences across axial length and refractive error. Communications Biology, 2020, 3, 133.	4.4	22
26	Uncorrected refractive error in the Australian National Eye Health Survey. Clinical and Experimental Ophthalmology, 2020, 48, 9-11.	2.6	2
27	Evaluating the Performance of Various Machine Learning Algorithms to Detect Subclinical Keratoconus. Translational Vision Science and Technology, 2020, 9, 24.	2.2	37
28	Supply and Demand of Domestic Corneal Tissue and Its Implications on Export Potentialâ€"Using Australia as an Example. Cornea, 2020, Publish Ahead of Print, 1229-1235.	1.7	3
29	Twin Registries Moving Forward and Meeting the Future: A Review. Twin Research and Human Genetics, 2019, 22, 201-209.	0.6	4
30	Ranking the Importance of Genetic Factors by Variable-Selection Confidence Sets. Journal of the Royal Statistical Society Series C: Applied Statistics, 2019, 68, 727-749.	1.0	4
31	Do age-related macular degeneration genes show association with keratoconus?. Eye and Vision (London, England), 2019, 6, 38.	3.0	7
32	Recurrent structural variation, clustered sites of selection, and disease risk for the complement factor H ($\langle i \rangle$ CFH $\langle i \rangle$) gene family. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, E4433-E4442.	7.1	43
33	Changing vision: a review of pharmacogenetic studies for treatment response in age-related macular degeneration patients. Pharmacogenomics, 2018, 19, 435-461.	1.3	5
34	Genome-wide association meta-analysis highlights light-induced signaling as a driver for refractive error. Nature Genetics, 2018, 50, 834-848.	21.4	239
35	Association of Genetic Variants With Response to Anti–Vascular Endothelial Growth Factor Therapy in Age-Related Macular Degeneration. JAMA Ophthalmology, 2018, 136, 875.	2.5	30
36	Gene Expression and Pathways Underlying Form Deprivation Myopia in the Guinea Pig Sclera. , 2018, 59, 1425.		33

#	Article	IF	Citations
37	A genome-wide association study of corneal astigmatism: The CREAM Consortium. Molecular Vision, 2018, 24, 127-142.	1.1	10
38	Loss of Function of P2X7 Receptor Scavenger Activity in Aging Mice. American Journal of Pathology, 2017, 187, 1670-1685.	3.8	34
39	A decade of age-related macular degeneration risk models: What have we learned from them and where are we going?. Ophthalmic Genetics, 2017, 38, 301-307.	1.2	2
40	Joint Analysis of Nuclear and Mitochondrial Variants in Age-Related Macular Degeneration Identifies Novel Loci <i>TRPM1</i> and <i>ABHD2/RLBP1</i> , 2017, 58, 4027.		21
41	Paradigm of Susceptibility Genes in AMD and PCV. Essentials in Ophthalmology, 2017, , 169-192.	0.1	1
42	Recent advances and future directions for the pharmacogenetic basis of anti-VEGF treatment response in neovascular age-related macular degeneration. Neural Regeneration Research, 2017, 12, 584.	3.0	1
43	Genetics in Retinal Diseases. Developments in Ophthalmology, 2016, 55, 57-62.	0.1	9
44	Reticular Pseudodrusen in Intermediate Age-Related Macular Degeneration: Prevalence, Detection, Clinical, Environmental, and Genetic Associations., 2016, 57, 1310.		57
45	GWAS study using DNA pooling strategy identifies association of variant rs4910623 in OR52B4 gene with anti-VEGF treatment response in age-related macular degeneration. Scientific Reports, 2016, 6, 37924.	3.3	23
46	Pooled genome wide association detects association upstream of FCRL3 with Graves' disease. BMC Genomics, 2016, 17, 939.	2.8	10
47	Meta-analysis of gene–environment-wide association scans accounting for education level identifies additional loci for refractive error. Nature Communications, 2016, 7, 11008.	12.8	104
48	Childhood gene-environment interactions and age-dependent effects of genetic variants associated with refractive error and myopia: The CREAM Consortium. Scientific Reports, 2016, 6, 25853.	3.3	80
49	Multiallelic copy number variation in the complement component 4A (C4A) gene is associated with late-stage age-related macular degeneration (AMD). Journal of Neuroinflammation, 2016, 13, 81.	7.2	31
50	Reticular Pseudodrusen and Their Association with Age-Related Macular Degeneration. Ophthalmology, 2016, 123, 599-608.	5.2	92
51	A large genome-wide association study of age-related macular degeneration highlights contributions of rare and common variants. Nature Genetics, 2016, 48, 134-143.	21.4	1,167
52	AGE-RELATED MACULAR DEGENERATION PHENOTYPES ASSOCIATED WITH MUTUALLY EXCLUSIVE HOMOZYGOUS RISK VARIANTS IN CFH AND HTRA1 GENES. Retina, 2015, 35, 989-998.	1.7	7
53	Assessment of Macular Parameter Changes in Patients with Keratoconus Using Optical Coherence Tomography. Journal of Ophthalmology, 2015, 2015, 1-6.	1.3	16
54	Genome-wide association study for refractive astigmatism reveals genetic co-determination with spherical equivalent refractive error: the CREAM consortium. Human Genetics, 2015, 134, 131-146.	3.8	24

#	Article	IF	CITATIONS
55	Age-Related Macular Degeneration in Ethnically Diverse Australia: Melbourne Collaborative Cohort Study. Ophthalmic Epidemiology, 2015, 22, 75-84.	1.7	6
56	Identification of myopia-associated WNT7B polymorphisms provides insights into the mechanism underlying the development of myopia. Nature Communications, 2015, 6, 6689.	12.8	70
57	Association Study of Mannose-Binding Lectin Levels and Genetic Variants in Lectin Pathway Proteins with Susceptibility to Age-Related Macular Degeneration: A Case-Control Study. PLoS ONE, 2015, 10, e0134107.	2.5	6
58	Genome-Wide Meta-Analysis of Myopia and Hyperopia Provides Evidence for Replication of 11 Loci. PLoS ONE, 2014, 9, e107110.	2.5	40
59	Impact of Keratoconus in the Better Eye and the Worse Eye on Vision-Related Quality of Life., 2014, 55, 412.		51
60	POLYMORPHISMS IN THE APOE GENE AND THE LOCATION OF RETINAL FLUID IN EYES WITH NEOVASCULAR AGE-RELATED MACULAR DEGENERATION. Retina, 2014, 34, 2367-2375.	1.7	5
61	Assessment of Anterior Segment Parameters of Keratoconus Eyes in an Australian Population. Optometry and Vision Science, 2014, 91, 803-809.	1.2	31
62	Dietary Patterns and Their Associations with Age-Related Macular Degeneration. Ophthalmology, 2014, 121, 1428-1434.e2.	5.2	63
63	Predictors of anti-VEGF treatment response in neovascular age-related macular degeneration. Survey of Ophthalmology, 2014, 59, 1-18.	4.0	122
64	How genetic studies have advanced our understanding of ageâ€related macular degeneration and their impact on patient care: a review. Clinical and Experimental Ophthalmology, 2014, 42, 53-64.	2.6	7
65	Technical considerations for genotyping multi-allelic copy number variation (CNV), in regions of segmental duplication. BMC Genomics, 2014, 15, 329.	2.8	38
66	The role of proteases and inflammatory molecules in triggering neovascular age-related macular degeneration: basic science to clinical relevance. Translational Research, 2014, 164, 179-192.	5.0	10
67	Association of the Hepatocyte Growth Factor Gene with Keratoconus in an Australian Population. PLoS ONE, 2014, 9, e84067.	2.5	48
68	Variants in the VEGFA Gene and Treatment Outcome after Anti-VEGF Treatment for Neovascular Age-related Macular Degeneration. Ophthalmology, 2013, 120, 115-121.	5.2	75
69	Meta-analysis of genome-wide association studies in five cohorts reveals common variants in RBFOX1, a regulator of tissue-specific splicing, associated with refractive error. Human Molecular Genetics, 2013, 22, 2754-2764.	2.9	60
70	The Australian Twin Registry as a Resource For Genetic Studies into Ophthalmic Traits. Twin Research and Human Genetics, 2013, 16, 52-57.	0.6	2
71	Nine Loci for Ocular Axial Length Identified through Genome-wide Association Studies, Including Shared Loci with Refractive Error. American Journal of Human Genetics, 2013, 93, 264-277.	6.2	139
72	Genetic Influences on the Outcome of Anti-Vascular Endothelial Growth Factor Treatment in Neovascular Age-related Macular Degeneration. Ophthalmology, 2013, 120, 1641-1648.	5.2	65

#	Article	IF	Citations
73	Molecular methods for genotyping complex copy number polymorphisms. Genomics, 2013, 101, 86-93.	2.9	40
74	Genetic Association of Refractive Error and Axial Length with 15q14 but Not 15q25 in the Blue Mountains Eye Study Cohort. Ophthalmology, 2013, 120, 292-297.	5.2	26
75	Genome-wide meta-analyses of multiancestry cohorts identify multiple new susceptibility loci for refractive error and myopia. Nature Genetics, 2013, 45, 314-318.	21.4	398
76	Seven new loci associated with age-related macular degeneration. Nature Genetics, 2013, 45, 433-439.	21.4	687
77	Identification of a rare coding variant in complement 3 associated with age-related macular degeneration. Nature Genetics, 2013, 45, 1375-1379.	21.4	158
78	Age-related macular degeneration and DNA methylation. Epigenomics, 2013, 5, 239-241.	2.1	9
79	Younger Siblings, C-Reactive Protein, and Risk of Age-Related Macular Degeneration. American Journal of Epidemiology, 2013, 177, 933-943.	3.4	2
80	Germline Variants and Advanced Colorectal Adenomas: Adenoma Prevention with Celecoxib Trial Genome-wide Association Study. Clinical Cancer Research, 2013, 19, 6430-6437.	7.0	9
81	A rare functional haplotype of the <i>P2RX4</i> and <i>P2RX7</i> genes leads to loss of innate phagocytosis and confers increased risk of ageâ€related macular degeneration. FASEB Journal, 2013, 27, 1479-1487.	0.5	61
82	THE PREVALENCE AND RISK FACTORS OF EPIRETINAL MEMBRANES. Retina, 2013, 33, 1026-1034.	1.7	86
83	Evaluating the Association Between Keratoconus and the Corneal Thickness Genes in an Independent Australian Population., 2013, 54, 8224.		57
84	Insights into the Genetic Architecture of Early Stage Age-Related Macular Degeneration: A Genome-Wide Association Study Meta-Analysis. PLoS ONE, 2013, 8, e53830.	2.5	108
85	Genetic Loci for Retinal Arteriolar Microcirculation. PLoS ONE, 2013, 8, e65804.	2.5	27
86	Proof of Concept, Randomized, Placebo-Controlled Study of the Effect of Simvastatin on the Course of Age-Related Macular Degeneration. PLoS ONE, 2013, 8, e83759.	2.5	67
87	Association of the del443ins54 at the ARMS2 locus in Indian and Australian cohorts with age-related macular degeneration. Molecular Vision, 2013, 19, 822-8.	1.1	6
88	20/20-Alcohol and Age-related Macular Degeneration: The Melbourne Collaborative Cohort Study. American Journal of Epidemiology, 2012, 176, 289-298.	3.4	59
89	Can genetic associations change with age? CFH and age-related macular degeneration. Human Molecular Genetics, 2012, 21, 5229-5236.	2.9	20
90	Apolipoprotein E Gene Associations in Age-related Macular Degeneration: The Melbourne Collaborative Cohort Study. American Journal of Epidemiology, 2012, 175, 511-518.	3.4	34

#	Article	IF	CITATIONS
91	Heritability of the spatial distribution and peak density of macular pigment: a classical twin study. Eye, 2012, 26, 1217-1225.	2.1	9
92	Refinement of the associations between risk of colorectal cancer and polymorphisms on chromosomes 1q41 and 12q13.13. Human Molecular Genetics, 2012, 21, 934-946.	2.9	19
93	Hypomethylation of the IL17RC Promoter Associates with Age-Related Macular Degeneration. Cell Reports, 2012, 2, 1151-1158.	6.4	154
94	Large scale international replication and meta-analysis study confirms association of the 15q14 locus with myopia. The CREAM consortium. Human Genetics, 2012, 131, 1467-1480.	3.8	67
95	Delay to Treatment and Visual Outcomes in Patients Treated With Anti-Vascular Endothelial Growth Factor for Age-Related Macular Degeneration. American Journal of Ophthalmology, 2012, 153, 678-686.e2.	3.3	119
96	Heritability and Genome-Wide Association Study to Assess Genetic Differences between Advanced Age-related Macular Degeneration Subtypes. Ophthalmology, 2012, 119, 1874-1885.	5.2	73
97	Comprehensive Analysis of Copy Number Variation of Genes at Chromosome 1 and 10 Loci Associated with Late Age Related Macular Degeneration. PLoS ONE, 2012, 7, e35255.	2.5	20
98	Assessment of the Association of Matrix Metalloproteinases with Myopia, Refractive Error and Ocular Biometric Measures in an Australian Cohort. PLoS ONE, 2012, 7, e47181.	2.5	14
99	Almost total protection from age-related macular degeneration by haplotypes of the Regulators of Complement Activation. Genomics, 2011, 98, 412-421.	2.9	5
100	Identification of Urinary Biomarkers for Age-Related Macular Degeneration., 2011, 52, 4639.		40
101	Clinical validation of a genetic model to estimate the risk of developing choroidal neovascular age-related macular degeneration. Human Genomics, 2011, 5, 420.	2.9	49
102	Evidence of association of <i> APOE </i> with age-related macular degeneration - a pooled analysis of 15 studies. Human Mutation, 2011, 32, 1407-1416.	2.5	130
103	Variations in Apolipoprotein E Frequency With Age in a Pooled Analysis of a Large Group of Older People. American Journal of Epidemiology, 2011, 173, 1357-1364.	3.4	85
104	Abdominal Obesity and Age-related Macular Degeneration. American Journal of Epidemiology, 2011, 173, 1246-1255.	3.4	87
105	Variants in the <i>APOE </i> Gene Are Associated with Improved Outcome after Anti-VEGF Treatment for Neovascular AMD., 2011, 52, 4072.		52
106	Common variants near FRK/COL10A1 and VEGFA are associated with advanced age-related macular degeneration. Human Molecular Genetics, 2011, 20, 3699-3709.	2.9	232
107	Animal Models of Retinal Disease. Progress in Molecular Biology and Translational Science, 2011, 100, 211-286.	1.7	89
108	Multiple Common Susceptibility Variants near BMP Pathway Loci GREM1, BMP4, and BMP2 Explain Part of the Missing Heritability of Colorectal Cancer. PLoS Genetics, 2011, 7, e1002105.	3.5	188

#	Article	IF	Citations
109	Gene Patents Related to Common Diseases of the Eye. Recent Patents on DNA & Gene Sequences, 2011, 5, 185-193.	0.7	4
110	Analysis of glutathione S-transferase Pi isoform (GSTP1) single-nucleotide polymorphisms and macular telangiectasia type 2. International Ophthalmology, 2010, 30, 645-650.	1.4	6
111	The GEnes in Myopia (GEM) study in understanding the aetiology of refractive errors. Progress in Retinal and Eye Research, 2010, 29, 520-542.	15.5	75
112	An Intergenic Region between the tagSNP rs3793917 and rs11200638 in the <i>HTRA1 </i> Gene Indicates Association with Age-Related Macular Degeneration., 2010, 51, 4932.		18
113	Long-term refractive outcomes and stability after excimer laser surgery for myopia. Journal of Cataract and Refractive Surgery, 2010, 36, 1709-1717.	1.5	45
114	Role of the Hepatocyte Growth Factor Gene in Refractive Error. Ophthalmology, 2010, 117, 239-245.e2.	5.2	45
115	C-Reactive Protein Levels and Complement Factor H Polymorphism Interaction in Age-related Macular Degeneration and Its Progression. Ophthalmology, 2010, 117, 1982-1988.	5.2	59
116	Twins Studies and Myopia., 2010,, 183-199.		0
117	Discordant Refraction in Male Monozygotic Twins. Journal of Pediatric Ophthalmology and Strabismus, 2010, 47 Online, e1-2.	0.7	0
118	Analysis of Rare Variants in the Complement Component 2 (C2) and Factor B (BF) Genes Refine Association for Age-Related Macular Degeneration (AMD)., 2009, 50, 540.		41
119	Mirror image congenital esotropia and concordant hypermetropia in identical twins. European Journal of Ophthalmology, 2009, 19, 1073-1075.	1.3	5
120	Role of Genetic Factors in Lower- and Higher-Order Aberrations – The Genes in Myopia Twin Study. Ophthalmic Research, 2009, 41, 142-147.	1.9	5
121	The dot-and-fleck retinopathy of X linked Alport syndrome is independent of complement factor H (CFH) gene polymorphisms. British Journal of Ophthalmology, 2009, 93, 379-382.	3.9	3
122	Primary open angle glaucoma in subjects harbouring the predicted <i>GLC1L</i> haplotype reveals a normotensive phenotype. Clinical and Experimental Ophthalmology, 2009, 37, 201-207.	2.6	4
123	Sorsby's Fundus Dystrophy: a case report to raise awareness of the disease and potential future treatments. Clinical and Experimental Ophthalmology, 2009, 37, 325-327.	2.6	2
124	Mislabelling of twin zygosities - the Genes in Myopia (GEM) twin study. Clinical and Experimental Ophthalmology, 2009, 37, 629-630.	2.6	1
125	New era for personalized medicine: the diagnosis and management of ageâ€related macular degeneration. Clinical and Experimental Ophthalmology, 2009, 37, 814-821.	2.6	29
126	Amyloid precursor protein processing and retinal pathology in mouse models of Alzheimer's disease. Graefe's Archive for Clinical and Experimental Ophthalmology, 2009, 247, 1213-1221.	1.9	133

#	Article	IF	Citations
127	Gene–Environment Interactions and Aging Visual Function. Ophthalmology, 2009, 116, 263-269.e1.	5.2	14
128	Outcomes of laser refractive surgery for myopia. Journal of Cataract and Refractive Surgery, 2009, 35, 921-933.	1.5	46
129	Androgen Receptor Repeat Length Polymorphism Associated with Male-to-Female Transsexualism. Biological Psychiatry, 2009, 65, 93-96.	1.3	159
130	The SERPING1 gene and age-related macular degeneration. Lancet, The, 2009, 374, 875-876.	13.7	25
131	Recent Patents Relating to Diagnostic Advances in Age Related Macular Degeneration (AMD). Recent Patents on DNA & Gene Sequences, 2009, 3, 102-113.	0.7	5
132	Fine mapping linkage analysis identifies a novel susceptibility locus for myopia on chromosome 2q37 adjacent to but not overlapping MYP12. Molecular Vision, 2009, 15, 722-30.	1.1	11
133	Novel sequence elements define ancestral haplotypes of the region encompassing complement factor H. Human Immunology, 2008, 69, 207-219.	2.4	6
134	Body Stature and Myopiaâ€"The Genes in Myopia (GEM) Twin Study. Ophthalmic Epidemiology, 2008, 15, 135-139.	1.7	29
135	Testing Protocol and Recruitment in the Genes in Myopia Twin Study. Ophthalmic Epidemiology, 2008, 15, 140-147.	1.7	10
136	Gene-environment interaction in progression of AMD: the CFH gene, smoking and exposure to chronic infection. Human Molecular Genetics, 2008, 17, 1299-1305.	2.9	82
137	Dominant Genetic Effects on Corneal Astigmatism: The Genes in Myopia (GEM) Twin Study. , 2008, 49, 1339.		37
138	Assessment of <i>TGIF </i> as a Candidate Gene for Myopia., 2008, 49, 49.		32
139	Can HMG Co-A reductase inhibitors ("statins") slow the progression of age-related macular degeneration? The Age-Related Maculopathy Statin Study (ARMSS). Clinical Interventions in Aging, 2008, Volume 3, 581-593.	2.9	22
140	Evidence of Shared Genes in Refraction and Axial Length: The Genes in Myopia (GEM) Twin Study. , 2008, 49, 4336.		34
141	The Role of Educational Attainment in Refraction: The Genes in Myopia (GEM) Twin Study. , 2008, 49, 534.		50
142	Adult-Onset Myopia: The Genes in Myopia (GEM) Twin Study. , 2008, 49, 3324.		34
143	Myopia and Personality: The Genes in Myopia (GEM) Personality Study. , 2008, 49, 882.		17
144	Myopia: Recent Advances in Molecular Studies; Prevalence, Progression and Risk Factors; Emmetropization; Therapies; Optical Links; Peripheral Refraction; Sclera and Ocular Growth; Signalling Cascades; and Animal Models. Optometry and Vision Science, 2008, PAP, .	1.2	3

#	Article	lF	Citations
145	Myocilin Mutations and Their Role in Open-Angle Glaucoma. , 2008, , 205-217.		O
146	Evaluation of Accuracy in Proband-Reported Family History and Its Determinants: The Genes in Myopia Family Study. Optometry and Vision Science, 2007, 84, 481-486.	1,2	2
147	Genetic Mapping of Myopia Susceptibility Loci. , 2007, 48, 4924.		9
148	Ancestral LOXL1 variants are associated with pseudoexfoliation in Caucasian Australians but with markedly lower penetrance than in Nordic people. Human Molecular Genetics, 2007, 17, 710-716.	2.9	152
149	Linkage Replication of theMYP12Locus in Common Myopia. , 2007, 48, 4433.		29
150	Analysis of the RDS/peripherin gene in ageâ€related macular degeneration. Clinical and Experimental Ophthalmology, 2007, 35, 194-195.	2.6	6
151	Heritability and shared environment estimates for myopia and associated ocular biometric traits: the Genes in Myopia (GEM) family study. Human Genetics, 2007, 121, 511-520.	3.8	59
152	Vision-related Quality of Life Comparison for Emmetropes, Myopes After Refractive Surgery, and Myopes Wearing Spectacles or Contact Lenses. Journal of Refractive Surgery, 2007, 23, 752-759.	2.3	36
153	A tag-single nucleotide polymorphisms approach to the vascular endothelial growth factor-A gene in age-related macular degeneration. Molecular Vision, 2007, 13, 2148-52.	1.1	37
154	Blood storage at 4°Câ€"factors involved in DNA yield and quality. Translational Research, 2006, 147, 290-294.	2.3	31
155	Unraveling A Complex Genetic Disease: Age-related Macular Degeneration. Survey of Ophthalmology, 2006, 51, 576-586.	4.0	39
156	Heritability of Refractive Error and Ocular Biometrics: The Genes in Myopia (GEM) Twin Study. , 2006, 47, 4756.		176
157	Heritability of Macular Thickness Determined by Optical Coherence Tomography. , 2006, 47, 336.		21
158	Analysis of the Y402H Variant of the Complement Factor H Gene in Age-Related Macular Degeneration. , 2006, 47, 4194.		70
159	Refractive Errors in Twin Studies. Twin Research and Human Genetics, 2006, 9, 566-572.	0.6	39
160	Marked discordance for myopia in female monozygotic twins. Clinical and Experimental Ophthalmology, 2006, 34, 285-287.	2.6	4
161	Concordant bilateral Duane's Retraction Syndrome (type 1) in female monozygotic twins. Clinical and Experimental Ophthalmology, 2006, 34, 495-497.	2.6	1
162	Apolipoprotein (APOE) gene is associated with progression of age-related macular degeneration (AMD). Human Mutation, 2006, 27, 337-342.	2.5	98

#	Article	IF	Citations
163	Mirror-Image Congenital Esotropia in Monozygotic Twins. Journal of Pediatric Ophthalmology and Strabismus, 2006, 43, 170-171.	0.7	8
164	Refractive Errors in Twin Studies. Twin Research and Human Genetics, 2006, 9, 566-572.	0.6	29
165	Genes and Age-Related Macular Degeneration. , 2005, , 63-78.		0
166	Analysis of the EFEMP1 gene in individuals and families with early onset drusen. Eye, 2005, 19, 11-15.	2.1	29
167	Evidence for a novel glaucoma locus at chromosome 3p21-22. Human Genetics, 2005, 117, 249-257.	3.8	63
168	Linkage to $10q22$ for Maximum Intraocular Pressure and $1p32$ for Maximum Cup-to-Disc Ratio in an Extended Primary Open-Angle Glaucoma Pedigree., 2005, 46, 3723.		42
169	Methodology and Recruitment of Probands and Their Families for the Genes in Myopia (GEM) Study. Ophthalmic Epidemiology, 2005, 12, 383-392.	1.7	19
170	HMG CoA Reductase Inhibitors (Statins): Do They Have a Role in Age-related Macular Degeneration?. Survey of Ophthalmology, 2005, 50, 194-206.	4.0	52
171	The Q368STOP Myocilin Mutation in a Population-based Cohort: The Blue Mountains Eye Study. American Journal of Ophthalmology, 2005, 139, 1125-1126.	3.3	10
172	A Common Disease Haplotype for the Q368STOP Mutation of the Myocilin Gene in Australian and Canadian Glaucoma Families. American Journal of Ophthalmology, 2005, 140, 760-762.	3.3	13
173	The Â2 and Â4 Alleles of the Apolipoprotein Gene Are Associated with Age-Related Macular Degeneration. Investigative Ophthalmology and Visual Science, 2004, 45, 1311-1315.	3.3	178
174	Analysis of optineurin (OPTN) gene mutations in subjects with and without glaucoma: the Blue Mountains Eye Study. Clinical and Experimental Ophthalmology, 2004, 32, 518-522.	2.6	27
175	Association of the M55L and Q192R paraoxonase gene polymorphisms with age-related macular degeneration. American Journal of Ophthalmology, 2004, 138, 665-666.	3.3	38
176	Analysis of 15 primary open-angle glaucoma families from Australia identifies a founder effect for the Q368STOP mutation of myocilin. Human Genetics, 2003, 112, 110-116.	3.8	39
177	Generating mouse models of retinal disease using ENU mutagenesis. Vision Research, 2002, 42, 479-485.	1.4	11
178	Analysis of the Arg345Trp disease-associated allele of the EFEMP1 gene in individuals with early onset drusen or familial age-related macular degeneration. Clinical and Experimental Ophthalmology, 2002, 30, 419-423.	2.6	25
179	The Taa1 restriction enzyme provides a simple means to identify the Q368STOP mutation of the myocilin gene in primary open angle glaucoma. American Journal of Ophthalmology, 2001, 131, 510-511.	3.3	9
180	Evidence for genetic heterogeneity within eight glaucoma families, with the GLC1A Gln368STOP mutation being an important phenotypic modifier11None of the authors has a financial interest relating to this article Ophthalmology, 2001, 108, 1607-1620.	5.2	106

#	Article	IF	CITATION
181	Cholesterolâ€lowering medications reduce the risk of ageâ€related maculopathy progression. Medical Journal of Australia, 2001, 175, 340-340.	1.7	77
182	Cytokine Receptor Genes: Structure, Chromosomal Location, and Involvement in Human Disease. Leukemia and Lymphoma, 1995, 18, 373-383.	1.3	13
183	Insertional inactivation of the WT1 gene in tumour cells from a patient with WAGR syndrome. Human Genetics, 1993, 92, 83-86.	3.8	14
184	Constitutional mutations in the WT1 gene in patients with Denys-Drash syndrome. Human Molecular Genetics, 1992, 1, 301-305.	2.9	118