Ben Breitung

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3019878/publications.pdf Version: 2024-02-01

REN RREITUNC

#	Article	IF	CITATIONS
1	Determining role of individual cations in high entropy oxides: Structure and reversible tuning of optical properties. Scripta Materialia, 2022, 207, 114273.	5.2	15
2	Highâ€Entropy Sulfides as Electrode Materials for Liâ€lon Batteries. Advanced Energy Materials, 2022, 12, .	19.5	57
3	Timeâ€Dependent Cation Selectivity of Titanium Carbide MXene in Aqueous Solution. Advanced Sustainable Systems, 2022, 6, .	5.3	4
4	Highâ€Entropy Sulfides as Electrode Materials for Liâ€lon Batteries (Adv. Energy Mater. 8/2022). Advanced Energy Materials, 2022, 12, .	19.5	1
5	Acoustic Emission Monitoring of High-Entropy Oxyfluoride Rock-Salt Cathodes during Battery Operation. Coatings, 2022, 12, 402.	2.6	8
6	Resolving the Role of Configurational Entropy in Improving Cycling Performance of Multicomponent Hexacyanoferrate Cathodes for Sodiumâ€ion Batteries. Advanced Functional Materials, 2022, 32, .	14.9	37
7	High entropy fluorides as conversion cathodes with tailorable electrochemical performance. Journal of Energy Chemistry, 2022, 72, 342-351.	12.9	14
8	High Entropy and Low Symmetry: Triclinic High-Entropy Molybdates. Inorganic Chemistry, 2021, 60, 115-123.	4.0	10
9	Mechanochemical synthesis of novel rutile-type high entropy fluorides for electrocatalysis. Journal of Materials Chemistry A, 2021, 9, 8998-9009.	10.3	45
10	High-entropy energy materials: challenges and new opportunities. Energy and Environmental Science, 2021, 14, 2883-2905.	30.8	282
11	Highâ€Entropy Metal–Organic Frameworks for Highly Reversible Sodium Storage. Advanced Materials, 2021, 33, e2101342.	21.0	97
12	Highâ€Entropy Metal–Organic Frameworks for Highly Reversible Sodium Storage (Adv. Mater. 34/2021). Advanced Materials, 2021, 33, 2170269.	21.0	4
13	Highâ€Entropy Energy Materials in the Age of Big Data: A Critical Guide to Nextâ€Generation Synthesis and Applications. Advanced Energy Materials, 2021, 11, 2102355.	19.5	37
14	Operando acoustic emission monitoring of degradation processes in lithium-ion batteries with a high-entropy oxide anode. Scientific Reports, 2021, 11, 23381.	3.3	8
15	Mechanochemical synthesis: route to novel rock-salt-structured high-entropy oxides and oxyfluorides. Journal of Materials Science, 2020, 55, 16879-16889.	3.7	15
16	Adhesive Ionâ€Gel as Gate Insulator of Electrolyteâ€Gated Transistors. ChemElectroChem, 2020, 7, 2692-2692.	3.4	0
17	Tailored Silicon/Carbon Compounds for Printed Li–Ion Anodes. Batteries and Supercaps, 2020, 3, 671-671	4.7	0
18	Lithium containing layered high entropy oxide structures. Scientific Reports, 2020, 10, 18430.	3.3	47

Ben Breitung

#	Article	IF	CITATIONS
19	ALD-Derived, Low-Density Alumina as Solid Electrolyte in Printed Low-Voltage FETs. IEEE Transactions on Electron Devices, 2020, 67, 3828-3833.	3.0	3
20	High entropy oxides: The role of entropy, enthalpy and synergy. Scripta Materialia, 2020, 187, 43-48.	5.2	165
21	Fully Printed Inverters using Metalâ€Oxide Semiconductor and Graphene Passives on Flexible Substrates. Physica Status Solidi - Rapid Research Letters, 2020, 14, 2000252.	2.4	11
22	Gassing Behavior of Highâ€Entropy Oxide Anode and Oxyfluoride Cathode Probed Using Differential Electrochemical Mass Spectrometry. Batteries and Supercaps, 2020, 3, 361-369.	4.7	31
23	Spinel to Rock-Salt Transformation in High Entropy Oxides with Li Incorporation. Electrochem, 2020, 1, 60-74.	3.3	35
24	Tailored Silicon/Carbon Compounds for Printed Li–Ion Anodes. Batteries and Supercaps, 2020, 3, 713-720.	4.7	5
25	Adhesive Ionâ€Gel as Gate Insulator of Electrolyteâ€Gated Transistors. ChemElectroChem, 2020, 7, 2735-2739.	3.4	2
26	Printing Technologies for Integration of Electronic Devices and Sensors. NATO Science for Peace and Security Series C: Environmental Security, 2020, , 1-34.	0.2	4
27	Development of Fully Printed Electrolyte-Gated Oxide Transistors Using Graphene Passive Structures. ACS Applied Electronic Materials, 2019, 1, 1538-1544.	4.3	19
28	Highâ€Entropy Oxides: Highâ€Entropy Oxides: Fundamental Aspects and Electrochemical Properties (Adv.) Tj E1	[Qq0 0 0 r 21.0	gBT /Overlock
29	Thin Films of Thermally Stable Ordered Mesoporous Rh ₂ O ₃ (I) for Visible-Light Photocatalysis and Humidity Sensing. ACS Applied Nano Materials, 2019, 2, 7126-7133.	5.0	9
30	Inkâ€Jet Printable, Selfâ€Assembled, and Chemically Crosslinked Ionâ€Gel as Electrolyte for Thin Film, Printable Transistors. Advanced Materials Interfaces, 2019, 6, 1901074.	3.7	11
31	Reversible control of magnetism: on the conversion of hydrated FeF ₃ with Li to Fe and LiF. Journal of Materials Chemistry A, 2019, 7, 24005-24011.	10.3	6
32	High entropy oxides as anode material for Li-ion battery applications: A practical approach. Electrochemistry Communications, 2019, 100, 121-125.	4.7	125
33	Multi-anionic and -cationic compounds: new high entropy materials for advanced Li-ion batteries. Energy and Environmental Science, 2019, 12, 2433-2442.	30.8	241
34	Highâ€Entropy Oxides: Fundamental Aspects and Electrochemical Properties. Advanced Materials, 2019, 31, e1806236.	21.0	412
35	On the homogeneity of high entropy oxides: An investigation at the atomic scale. Scripta Materialia, 2019, 166, 58-63.	5.2	90
36	Influence of Humidity on the Performance of Composite Polymer Electrolyte-Gated Field-Effect Transistors and Circuits. IEEE Transactions on Electron Devices, 2019, 66, 2202-2207.	3.0	35

Ben Breitung

#	Article	IF	CITATIONS
37	Electrolyteâ€Gated Transistors: Inkâ€Jet Printable, Selfâ€Assembled, and Chemically Crosslinked Ionâ€Gel as Electrolyte for Thin Film, Printable Transistors (Adv. Mater. Interfaces 21/2019). Advanced Materials Interfaces, 2019, 6, 1970132.	3.7	0
38	Tailoring Threshold Voltages of Printed Electrolyte-Gated Field-Effect Transistors by Chromium Doping of Indium Oxide Channels. ACS Omega, 2019, 4, 20579-20585.	3.5	5
39	Artificial Composite Anode Comprising Highâ€Capacity Silicon and Carbonaceous Nanostructures for Long Cycle Life Lithiumâ€Ion Batteries. Batteries and Supercaps, 2018, 1, 27-32.	4.7	8
40	Facile synthesis of C–FeF ₂ nanocomposites from CFx: influence of carbon precursor on reversible lithium storage. RSC Advances, 2018, 8, 36802-36811.	3.6	13
41	Silicon Nanoparticles with a Polymer-Derived Carbon Shell for Improved Lithium-Ion Batteries: Investigation into Volume Expansion, Gas Evolution, and Particle Fracture. ACS Omega, 2018, 3, 16706-16713.	3.5	27
42	Printed Electronics Based on Inorganic Semiconductors: From Processes and Materials to Devices. Advanced Materials, 2018, 30, e1707600.	21.0	148
43	High entropy oxides for reversible energy storage. Nature Communications, 2018, 9, 3400.	12.8	643
44	Formation of nanocrystalline graphene on germanium. Nanoscale, 2018, 10, 12156-12162.	5.6	10
45	[Ag ₁₁₅ S ₃₄ (SCH ₂ C ₆ H ₄ ^t Bu) <sub synthesis, crystal structure and NMR investigations of a soluble silver chalcogenide nanocluster. Chemical Science, 2017, 8, 2235-2240.</sub 	>47 7.4	o (dpph) < sub 55
46	Embroidered Copper Microwire Current Collector for Improved Cycling Performance of Silicon Anodes in Lithium-Ion Batteries. Scientific Reports, 2017, 7, 13010.	3.3	12
47	The Critical Role of Fluoroethylene Carbonate in the Gassing of Silicon Anodes for Lithium-Ion Batteries. ACS Energy Letters, 2017, 2, 2228-2233.	17.4	97
48	Microwave synthesis of high-quality and uniform 4 nm ZnFe ₂ O ₄ nanocrystals for application in energy storage and nanomagnetics. Beilstein Journal of Nanotechnology, 2016, 7, 1350-1360.	2.8	32
49	Facile Synthesis of Carbon–Metal Fluoride Nanocomposites for Lithiumâ€ l on Batteries. Energy Technology, 2016, 4, 201-211.	3.8	14
50	In situ and operando atomic force microscopy of high-capacity nano-silicon based electrodes for lithium-ion batteries. Nanoscale, 2016, 8, 14048-14056.	5.6	64
51	Hierarchical Carbon with High Nitrogen Doping Level: A Versatile Anode and Cathode Host Material for Long-Life Lithium-Ion and Lithium–Sulfur Batteries. ACS Applied Materials & Interfaces, 2016, 8, 10274-10282.	8.0	49
52	Improving the Energy Density and Power Density of CF _{<i>x</i>} by Mechanical Milling: A Primary Lithium Battery Electrode. ACS Applied Materials & Interfaces, 2013, 5, 11207-11211.	8.0	60
53	Energy Storage: CFx Derived Carbon–FeF ₂ Nanocomposites for Reversible Lithium Storage (Adv. Energy Mater. 3/2013). Advanced Energy Materials, 2013, 3, 274-274.	19.5	1
54	CFx Derived Carbon–FeF ₂ Nanocomposites for Reversible Lithium Storage. Advanced Energy Materials, 2013, 3, 308-313.	19.5	76

#	Article	IF	CITATIONS
55	Influence of particle size and fluorination ratio of CF <i>_x</i> precursor compounds on the electrochemical performance of C–FeF ₂ nanocomposites for reversible lithium storage. Beilstein Journal of Nanotechnology, 2013, 4, 705-713.	2.8	19
56	Functionalised Silver Chalcogenide Clusters. Zeitschrift Fur Anorganische Und Allgemeine Chemie, 2011, 637, 995-1006.	1.2	28