Robert Steadman

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3019332/publications.pdf

Version: 2024-02-01

58 papers

4,034 citations

147801 31 h-index 58 g-index

58 all docs 58 docs citations

58 times ranked 6075 citing authors

#	Article	IF	CITATIONS
1	Cancer Exosomes Trigger Fibroblast to Myofibroblast Differentiation. Cancer Research, 2010, 70, 9621-9630.	0.9	685
2	TGF-β1-mediated fibroblast–myofibroblast terminal differentiation—the role of smad proteins. Experimental Cell Research, 2003, 282, 90-100.	2.6	335
3	Fibroblasts and myofibroblasts in renal fibrosis. International Journal of Experimental Pathology, 2011, 92, 158-167.	1.3	294
4	Adhesion and signaling by B cellâ€derived exosomes: the role of integrins. FASEB Journal, 2004, 18, 977-979.	0.5	280
5	Transforming Growth Factor- \hat{l}^21 (TGF- \hat{l}^21)-stimulated Fibroblast to Myofibroblast Differentiation Is Mediated by Hyaluronan (HA)-facilitated Epidermal Growth Factor Receptor (EGFR) and CD44 Co-localization in Lipid Rafts. Journal of Biological Chemistry, 2013, 288, 14824-14838.	3.4	220
6	Involvement of Hyaluronan in Regulation of Fibroblast Phenotype. Journal of Biological Chemistry, 2007, 282, 25687-25697.	3.4	126
7	Hyaluronan Orchestrates Transforming Growth Factor- \hat{l}^21 -dependent Maintenance of Myofibroblast Phenotype. Journal of Biological Chemistry, 2009, 284, 9083-9092.	3.4	119
8	Hyaluronan Facilitates Transforming Growth Factor- \hat{l}^21 -mediated Fibroblast Proliferation. Journal of Biological Chemistry, 2008, 283, 6530-6545.	3.4	112
9	Modulation of TGFÎ 2 1-Dependent Myofibroblast Differentiation by Hyaluronan. American Journal of Pathology, 2009, 175, 148-160.	3.8	106
10	Hyaluronan Facilitates Transforming Growth Factor- \hat{l}^2 1-dependent Proliferation via CD44 and Epidermal Growth Factor Receptor Interaction. Journal of Biological Chemistry, 2011, 286, 17618-17630.	3.4	103
11	The Role of ADAM 15 in Glomerular Mesangial Cell Migration. Journal of Biological Chemistry, 2002, 277, 33683-33689.	3.4	101
12	Association of Prolonged Hyperglycemia With Glomerular Hypertrophy and Renal Basement Membrane Thickening in the Goto Kakizaki Model of Non–Insulin-Dependent Diabetes Mellitus. American Journal of Kidney Diseases, 2001, 37, 400-410.	1.9	81
13	Age-Related Changes in Pericellular Hyaluronan Organization Leads to Impaired Dermal Fibroblast to Myofibroblast Differentiation. American Journal of Pathology, 2009, 175, 1915-1928.	3.8	80
14	Induction of TGF- \hat{l}^21 synthesis in D-glucose primed human proximal tubular cells by IL- \hat{l}^2 and TNF \hat{l}_\pm . Kidney International, 1996, 50, 1546-1554.	5. 2	77
15	Myofibroblasts: Function, Formation, and Scope of Molecular Therapies for Skin Fibrosis. Biomolecules, 2021, 11, 1095.	4.0	77
16	Thyrotropin Receptor Activation Increases Hyaluronan Production in Preadipocyte Fibroblasts. Journal of Biological Chemistry, 2009, 284, 26447-26455.	3.4	73
17	Exposure of human renal proximal tubular cells to glucose leads to accumulation of type IV collagen and fibronectin by decreased degradation. Kidney International, 1997, 52, 973-984.	5.2	69
18	Aging Fibroblasts Resist Phenotypic Maturation Because of Impaired Hyaluronan-Dependent CD44/Epidermal Growth Factor Receptor Signaling. American Journal of Pathology, 2010, 176, 1215-1228.	3.8	66

#	Article	IF	Citations
19	Myofibroblastic Differentiation Leads to Hyaluronan Accumulation through Reduced Hyaluronan Turnover. Journal of Biological Chemistry, 2004, 279, 41453-41460.	3.4	54
20	Production and Regulation of Matrix Metalloproteinases and Their Inhibitors by Human Peritoneal Mesothelial Cells. Peritoneal Dialysis International, 2000, 20, 524-533.	2.3	53
21	Induction of Metalloproteinases by Glomerular Mesangial Cells Stimulated by Proteins of the Extracellular Matrix. Journal of the American Society of Nephrology: JASN, 2001, 12, 88-96.	6.1	53
22	Type 1 fimbriate Escherichia coli stimulates a unique pattern of degranulation by human polymorphonuclear leukocytes. Infection and Immunity, 1988, 56, 815-822.	2.2	51
23	Laminin cleavage by activated human neutrophils yields proteolytic fragments with selective migratory properties. Journal of Leukocyte Biology, 1993, 53, 354-365.	3.3	48
24	Glucose enhances mesangial cell apoptosis. Laboratory Investigation, 2006, 86, 566-577.	3.7	48
25	Renal proximal tubular cell fibronectin accumulation in response to glucose is polyol pathway dependent. Kidney International, 1999, 55, 160-167.	5.2	47
26	Glycosaminoglycan Regulation by VEGFA and VEGFC of the Glomerular Microvascular Endothelial Cell Glycocalyx inAVitro. American Journal of Pathology, 2013, 183, 604-616.	3.8	46
27	Diabetic nephropathy, inflammation, hyaluronan and interstitial fibrosis. Histology and Histopathology, 2008, 23, 731-9.	0.7	43
28	Tumor Necrosis Factor-stimulated Gene 6 (TSG-6)-mediated Interactions with the Inter- \hat{l} ±-inhibitor Heavy Chain 5 Facilitate Tumor Growth Factor \hat{l}^21 (TGF \hat{l}^21)-dependent Fibroblast to Myofibroblast Differentiation. Journal of Biological Chemistry, 2016, 291, 13789-13801.	3.4	40
29	Cell surface heparan sulfate proteoglycans control the response of renal interstitial fibroblasts to fibroblast growth factor-2. Kidney International, 2001, 59, 2084-2094.	5.2	38
30	$17\hat{l}^2$ -estradiol ameliorates age-associated loss of fibroblast function by attenuating IFN- \hat{l}^3 /STAT1-dependent miR-7 upregulation. Aging Cell, 2016, 15, 531-541.	6.7	36
31	Selective Regulation of ICAM-1 and RANTES Gene Expression after ICAM-1 Ligation on Human Renal Fibroblasts. Journal of the American Society of Nephrology: JASN, 2003, 14, 116-127.	6.1	34
32	Micro <scp>RNA</scp> â€7 inhibition rescues ageâ€associated loss of epidermal growth factor receptor and hyaluronanâ€dependent differentiation in fibroblasts. Aging Cell, 2014, 13, 235-244.	6.7	32
33	Hyaluronan Regulates Bone Morphogenetic Protein-7-dependent Prevention and Reversal of Myofibroblast Phenotype. Journal of Biological Chemistry, 2015, 290, 11218-11234.	3.4	31
34	Type 1 fimbriate strains of escherichia coli initiate renal parenchymal scarring. Kidney International, 1989, 36, 609-616.	5.2	30
35	Human neutrophils do not degrade major basement membrane components during chemotactic migration. International Journal of Biochemistry and Cell Biology, 1997, 29, 993-1004.	2.8	30
36	Nuclear hyaluronidase 2 drives alternative splicing of <i>CD44</i> pre-mRNA to determine profibrotic or antifibrotic cell phenotype. Science Signaling, 2017, 10, .	3.6	29

#	Article	IF	CITATIONS
37	Augmentation of kidney injury by basic fibroblast growth factor or platelet-derived growth factor does not induce progressive diabetic nephropathy in the Goto Kakizaki model of non-insulin-dependent diabetes. Translational Research, 1999, 134, 304-312.	2.3	28
38	Hepatocyte Growth Factor Mediates Enhanced Wound Healing Responses and Resistance to Transforming Growth Factor- \hat{l}^2 1-Driven Myofibroblast Differentiation in Oral Mucosal Fibroblasts. International Journal of Molecular Sciences, 2017, 18, 1843.	4.1	28
39	Interleukin- $1\hat{l}^2$ Induces Hyaluronan and CD44-Dependent Cell Protrusions That Facilitate Fibroblast-Monocyte Binding. American Journal of Pathology, 2013, 182, 2223-2240.	3.8	26
40	VARIABLE EXPRESSION OF P FIMBRIAE IN ESCHERICHIA COLI URINARY TRACT INFECTION. Lancet, The, 1989, 333, 1414-1418.	13.7	25
41	Tumour necrosis factor-stimulated gene (TSG)-6 controls epithelial–mesenchymal transition of proximal tubular epithelial cells. International Journal of Biochemistry and Cell Biology, 2011, 43, 1739-1746.	2.8	19
42	Decreased Degradation of Collagen and Fibronectin following Exposure of Proximal Cells to Glucose. Nephron Experimental Nephrology, 1999, 7, 449-462.	2.2	17
43	Human neutrophils are selectively activated by independent ligation of the subunits of the CD11b/CD18 integrin. Journal of Leukocyte Biology, 1994, 56, 708-713.	3.3	15
44	Novel epoxy-tiglianes stimulate skin keratinocyte wound healing responses and re-epithelialization via protein kinase C activation. Biochemical Pharmacology, 2020, 178, 114048.	4.4	14
45	CD147 mediates the CD44s-dependent differentiation of myofibroblasts driven by transforming growth factor-Î ² 1. Journal of Biological Chemistry, 2021, 297, 100987.	3.4	13
46	The influence of net surface charge on the interaction of uropathogenic Escherichia coli with human neutrophils. Biochimica Et Biophysica Acta - Molecular Cell Research, 1990, 1053, 37-42.	4.1	12
47	Structural and Functional Changes in Heparan Sulfate Proteoglycan Expression Associated with the Myofibroblastic Phenotype. American Journal of Pathology, 2003, 162, 977-989.	3.8	12
48	The assessment of relative surface hydrophobicity as a factor involved in the activation of human polymorphonuclear leukocytes by uropathogenic strains of Escherichia coli. Biochimica Et Biophysica Acta - Molecular Cell Research, 1989, 1013, 21-27.	4.1	11
49	Hyaluronidase-2 Regulates RhoA Signaling, Myofibroblast Contractility, and Other Key Profibrotic Myofibroblast Functions. American Journal of Pathology, 2020, 190, 1236-1255.	3.8	11
50	Hyaluronan Induces the Selective Accumulation of Matrix- and Cell-Associated Proteoglycans by Mesangial Cells. American Journal of Pathology, 2007, 171, 1811-1821.	3.8	10
51	A new antibody capture enzyme linked immunoassay specific for transforming growth factor beta. International Journal of Biochemistry and Cell Biology, 1995, 27, 207-213.	2.8	9
52	Leukotriene B4 generation by human monocytes and neutrophils stimulated by uropathogenic strains of Escherichia coli. Biochimica Et Biophysica Acta - Molecular Cell Research, 1990, 1052, 264-272.	4.1	8
53	CD11bCD18-Dependent stimulation of leukotriene B4 synthesis by human neutrophils (PMN) is synergistically enhanced by tumour necrosis factor \hat{l}_{\pm} and low dose diacylglycerol. International Journal of Biochemistry and Cell Biology, 1996, 28, 771-776.	2.8	7
54	Glucose modulates handling of apoptotic cells by mesangial cells: involvement of TGF- \hat{l}^21 . Laboratory Investigation, 2007, 87, 690-701.	3.7	7

#	Article	IF	CITATION
55	Cell surface heparan sulfate proteoglycans control the response of renal interstitial fibroblasts to fibroblast growth factor-2. Kidney International, 2001, 59, 2084.	5.2	7
56	Role of Hyaluronan in Human Adipogenesis: Evidence from in-Vitro and in-Vivo Studies. International Journal of Molecular Sciences, 2019, 20, 2675.	4.1	4
57	Characterisation of the Human ADAM15 Promoter. Nephron Experimental Nephrology, 2011, 118, e27-e38.	2.2	3
58	The role of encapsulation in the activation of human neutrophils by strains of <i>Escherichia coli</i> . Biochemical Society Transactions, 1989, 17, 756-757.	3.4	1