Haiyang Wang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3019005/publications.pdf Version: 2024-02-01

HAIVANC WANC

#	Article	IF	CITATIONS
1	D14–SCFD3-dependent degradation of D53 regulates strigolactone signalling. Nature, 2013, 504, 406-410.	27.8	669
2	Transposase-Derived Transcription Factors Regulate Light Signaling in <i>Arabidopsis</i> . Science, 2007, 318, 1302-1305.	12.6	439
3	The COP1-SPA1 interaction defines a critical step in phytochrome A-mediated regulation of HY5 activity. Genes and Development, 2003, 17, 2642-2647.	5.9	403
4	GW5 acts in the brassinosteroid signalling pathway to regulate grain width and weight in rice. Nature Plants, 2017, 3, 17043.	9.3	386
5	Phytochrome Signaling Mechanisms. The Arabidopsis Book, 2011, 9, e0148.	0.5	336
6	Light Regulates COP1-Mediated Degradation of HFR1, a Transcription Factor Essential for Light Signaling in Arabidopsis. Plant Cell, 2005, 17, 804-821.	6.6	301
7	The miR156/SPL Module, a Regulatory Hub and Versatile Toolbox, Gears up Crops for Enhanced Agronomic Traits. Molecular Plant, 2015, 8, 677-688.	8.3	273
8	<i>Days to heading 7</i> , a major quantitative locus determining photoperiod sensitivity and regional adaptation in rice. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 16337-16342.	7.1	253
9	Coordinated transcriptional regulation underlying the circadian clock in Arabidopsis. Nature Cell Biology, 2011, 13, 616-622.	10.3	245
10	Biochemical Characterization of <i>Arabidopsis</i> Complexes Containing CONSTITUTIVELY PHOTOMORPHOGENIC1 and SUPPRESSOR OF PHYA Proteins in Light Control of Plant Development. Plant Cell, 2008, 20, 2307-2323.	6.6	202
11	Ehd4 Encodes a Novel and Oryza-Genus-Specific Regulator of Photoperiodic Flowering in Rice. PLoS Genetics, 2013, 9, e1003281.	3.5	186
12	Association of functional nucleotide polymorphisms at <i>DTH2</i> with the northward expansion of rice cultivation in Asia. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 2775-2780.	7.1	178
13	<i>Arabidopsis</i> Transcription Factor ELONGATED HYPOCOTYL5 Plays a Role in the Feedback Regulation of Phytochrome A Signaling Â. Plant Cell, 2010, 22, 3634-3649.	6.6	165
14	Genome-wide selection and genetic improvement during modern maize breeding. Nature Genetics, 2020, 52, 565-571.	21.4	146
15	Phytochrome-interacting factors directly suppress MIR156 expression to enhance shade-avoidance syndrome in Arabidopsis. Nature Communications, 2017, 8, 348.	12.8	144
16	Development of a Haploid-Inducer Mediated Genome Editing System for Accelerating Maize Breeding. Molecular Plant, 2019, 12, 597-602.	8.3	144
17	ArabidopsisFHY3 defines a key phytochrome A signaling component directly interacting with its homologous partner FAR1. EMBO Journal, 2002, 21, 1339-1349.	7.8	141
18	Rice APC/CTE controls tillering by mediating the degradation of MONOCULM 1. Nature Communications, 2012, 3, 752.	12.8	138

#	Article	IF	CITATIONS
19	Transposase-Derived Proteins FHY3/FAR1 Interact with PHYTOCHROME-INTERACTING FACTOR1 to Regulate Chlorophyll Biosynthesis by Modulating <i>HEMB1</i> during Deetiolation in <i>Arabidopsis</i> . Plant Cell, 2012, 24, 1984-2000.	6.6	138
20	Dissecting the phytochrome A-dependent signaling network in higher plants. Trends in Plant Science, 2003, 8, 172-178.	8.8	133
21	STV11 encodes a sulphotransferase and confers durable resistance to rice stripe virus. Nature Communications, 2014, 5, 4768.	12.8	126
22	Identification and Characterization of an Epi-Allele of <i>FIE1</i> Reveals a Regulatory Linkage between Two Epigenetic Marks in Rice. Plant Cell, 2012, 24, 4407-4421.	6.6	125
23	Arabidopsis FHY3/FAR1 Gene Family and Distinct Roles of Its Members in Light Control of Arabidopsis Development. Plant Physiology, 2004, 136, 4010-4022.	4.8	119
24	A cyclic nucleotide-gated channel mediates cytoplasmic calcium elevation and disease resistance in rice. Cell Research, 2019, 29, 820-831.	12.0	119
25	Genome-Wide Binding Site Analysis of FAR-RED ELONGATED HYPOCOTYL3 Reveals Its Novel Function in <i>Arabidopsis</i> Development. Plant Cell, 2011, 23, 2514-2535.	6.6	118
26	Phytochrome Signaling: Time to Tighten up the Loose Ends. Molecular Plant, 2015, 8, 540-551.	8.3	115
27	<i>Pollen Semi-Sterility1</i> Encodes a Kinesin-1–Like Protein Important for Male Meiosis, Anther Dehiscence, and Fertility in Rice. Plant Cell, 2011, 23, 111-129.	6.6	113
28	<i>GLUTELIN PRECURSOR ACCUMULATION3</i> Encodes a Regulator of Post-Golgi Vesicular Traffic Essential for Vacuolar Protein Sorting in Rice Endosperm Â. Plant Cell, 2014, 26, 410-425.	6.6	113
29	<i>Arabidopsis</i> cryptochrome 1 functions in nitrogen regulation of flowering. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, 7661-7666.	7.1	107
30	FAR-RED ELONGATED HYPOCOTYL3 and FAR-RED IMPAIRED RESPONSE1 Transcription Factors Integrate Light and Abscisic Acid Signaling in Arabidopsis. Plant Physiology, 2013, 163, 857-866.	4.8	105
31	A selfish genetic element confers non-Mendelian inheritance in rice. Science, 2018, 360, 1130-1132.	12.6	105
32	Arabidopsis COP1/SPA1 Complex and FHY1/FHY3 Associate with Distinct Phosphorylated Forms of Phytochrome A in Balancing Light Signaling. Molecular Cell, 2008, 31, 607-613.	9.7	104
33	The SnRK2-APC/CTE regulatory module mediates the antagonistic action of gibberellic acid and abscisic acid pathways. Nature Communications, 2015, 6, 7981.	12.8	96
34	Arabidopsis FHY3 and FAR1 integrate light and strigolactone signaling to regulate branching. Nature Communications, 2020, 11, 1955.	12.8	91
35	Transcriptional activation and phosphorylation of OsCNGC9 confer enhanced chilling tolerance in rice. Molecular Plant, 2021, 14, 315-329.	8.3	89
36	OsSHI1 Regulates Plant Architecture Through Modulating the Transcriptional Activity of IPA1 in Rice. Plant Cell, 2019, 31, 1026-1042.	6.6	85

#	Article	IF	CITATIONS
37	Light-regulated overexpression of an Arabidopsis phytochrome A gene in rice alters plant architecture and increases grain yield. Planta, 2006, 223, 627-636.	3.2	84
38	<i>Arabidopsis</i> Phytochrome B Promotes SPA1 Nuclear Accumulation to Repress Photomorphogenesis under Far-Red Light Â. Plant Cell, 2013, 25, 115-133.	6.6	82
39	Arabidopsis FHY3 and FAR1 Regulate Light-Induced myo -Inositol Biosynthesis and Oxidative Stress Responses by Transcriptional Activation of MIPS1. Molecular Plant, 2016, 9, 541-557.	8.3	81
40	OsALMT7 Maintains Panicle Size and Grain Yield in Rice by Mediating Malate Transport. Plant Cell, 2018, 30, 889-906.	6.6	81
41	GOLGI TRANSPORT 1B Regulates Protein Export from the Endoplasmic Reticulum in Rice Endosperm Cells. Plant Cell, 2016, 28, 2850-2865.	6.6	79
42	Multifaceted roles of FHY3 and FAR1 in light signaling and beyond. Trends in Plant Science, 2015, 20, 453-461.	8.8	78
43	Light and Ethylene Coordinately Regulate the Phosphate Starvation Response through Transcriptional Regulation of <i>PHOSPHATE STARVATION RESPONSE1</i>	6.6	77
44	WHITE PANICLE1, a Val-tRNA Synthetase Regulating Chloroplast Ribosome Biogenesis in Rice, Is Essential for Early Chloroplast Development. Plant Physiology, 2016, 170, 2110-2123.	4.8	74
45	Arabidopsis FHY3 and FAR1 Regulate the Balance between Growth and Defense Responses under Shade Conditions. Plant Cell, 2019, 31, 2089-2106.	6.6	73
46	Analysis of far-red light-regulated genome expression profiles of phytochrome A pathway mutants in Arabidopsis. Plant Journal, 2002, 32, 723-733.	5.7	72
47	A pair of light signaling factors FHY3 and FAR1 regulates plant immunity by modulating chlorophyll biosynthesis. Journal of Integrative Plant Biology, 2016, 58, 91-103.	8.5	71
48	FHY3 and FAR1 Integrate Light Signals with the miR156-SPL Module-Mediated Aging Pathway to Regulate Arabidopsis Flowering. Molecular Plant, 2020, 13, 483-498.	8.3	71
49	<i>OsCOL10</i> , a <i>CONSTANS-Like</i> Gene, Functions as a Flowering Time Repressor Downstream of <i>Ghd7</i> in Rice. Plant and Cell Physiology, 2016, 57, 798-812.	3.1	69
50	Transcriptional and postâ€ŧranscriptional regulation of heading date in rice. New Phytologist, 2021, 230, 943-956.	7.3	69
51	An evolutionarily conserved gene, <i><scp>FUWA</scp></i> , plays a role in determining panicle architecture, grain shape and grain weight in rice. Plant Journal, 2015, 83, 427-438.	5.7	68
52	Gibberellin indirectly promotes chloroplast biogenesis as a means to maintain the chloroplast population of expanded cells. Plant Journal, 2012, 72, 768-780.	5.7	65
53	CRISPR/Cas9â€mediated knockout and overexpression studies reveal a role of maize phytochrome C in regulating flowering time and plant height. Plant Biotechnology Journal, 2020, 18, 2520-2532.	8.3	56
54	OsCNGC13 promotes seed-setting rate by facilitating pollen tube growth in stylar tissues. PLoS Genetics, 2017, 13, e1006906.	3.5	55

#	Article	IF	CITATIONS
55	Characterization of Maize Phytochrome-Interacting Factors in Light Signaling and Photomorphogenesis. Plant Physiology, 2019, 181, 789-803.	4.8	54
56	Exploiting SPL genes to improve maize plant architecture tailored for high-density planting. Journal of Experimental Botany, 2018, 69, 4675-4688.	4.8	51
57	Transcription Factors FHY3 and FAR1 Regulate Light-Induced <i>CIRCADIAN CLOCK ASSOCIATED1</i> Gene Expression in Arabidopsis. Plant Cell, 2020, 32, 1464-1478.	6.6	50
58	OsVPS9A Functions Cooperatively with OsRAB5A to Regulate Post-Golgi Dense Vesicle-Mediated Storage Protein Trafficking to the Protein Storage Vacuole in Rice Endosperm Cells. Molecular Plant, 2013, 6, 1918-1932.	8.3	48
59	Postâ€ŧranscriptional regulation of Ghd7 protein stability by phytochrome and Os <scp>GI</scp> in photoperiodic control of flowering in rice. New Phytologist, 2019, 224, 306-320.	7.3	48
60	Rice stripe virus suppresses jasmonic acid-mediated resistance by hijacking brassinosteroid signaling pathway in rice. PLoS Pathogens, 2020, 16, e1008801.	4.7	45
61	The APC/C ^{TE} E3 Ubiquitin Ligase Complex Mediates the Antagonistic Regulation of Root Growth and Tillering by ABA and GA. Plant Cell, 2020, 32, 1973-1987.	6.6	45
62	<i>GPA5</i> Encodes a Rab5a Effector Required for Post-Golgi Trafficking of Rice Storage Proteins. Plant Cell, 2020, 32, 758-777.	6.6	44
63	Regulatory modules controlling early shade avoidance response in maize seedlings. BMC Genomics, 2016, 17, 269.	2.8	42
64	IPA1 : A New "Green Revolution―Gene?. Molecular Plant, 2017, 10, 779-781.	8.3	42
65	Discrete and Essential Roles of the Multiple Domains of Arabidopsis FHY3 in Mediating Phytochrome A Signal Transduction Â. Plant Physiology, 2008, 148, 981-992.	4.8	40
66	Expression of tomato prosystemin gene in <i>Arabidopsis</i> reveals systemic translocation of its mRNA and confers necrotrophic fungal resistance. New Phytologist, 2018, 217, 799-812.	7.3	39
67	The OsHAPL1-DTH8-Hd1 complex functions as the transcription regulator to repress heading date in rice. Journal of Experimental Botany, 2017, 68, erw468.	4.8	38
68	Leaf angle: a target of genetic improvement in cereal crops tailored for highâ€density planting. Plant Biotechnology Journal, 2022, 20, 426-436.	8.3	37
69	<i>FAR-RED ELONGATED HYPOCOTYL3</i> activates <i>SEPALLATA2</i> but inhibits <i>CLAVATA3</i> to regulate meristem determinacy and maintenance in <i>Arabidopsis</i> . Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, 9375-9380.	7.1	36
70	Os <scp>PEX</scp> 5 regulates rice spikelet development through modulating jasmonic acid biosynthesis. New Phytologist, 2019, 224, 712-724.	7.3	36
71	Genomic insights into historical improvement of heterotic groups during modern hybrid maize breeding. Nature Plants, 2022, 8, 750-763.	9.3	36
72	Development of the "Third-Generation―Hybrid Rice in China. Genomics, Proteomics and Bioinformatics, 2018, 16, 393-396.	6.9	33

#	Article	IF	CITATIONS
73	Integration of light and hormone signaling pathways in the regulation of plant shade avoidance syndrome. ABIOTECH, 2021, 2, 131-145.	3.9	32
74	Correlation of the temporal and spatial expression patterns of HQT with the biosynthesis and accumulation of chlorogenic acid in Lonicera japonica flowers. Horticulture Research, 2019, 6, 73.	6.3	31
75	Light Regulation of Stomatal Development and Patterning: Shifting the Paradigm from Arabidopsis to Grasses. Plant Communications, 2020, 1, 100030.	7.7	29
76	DHD4, a CONSTANS-like family transcription factor, delays heading date by affecting the formation of the FAC complex in rice. Molecular Plant, 2021, 14, 330-343.	8.3	26
77	The LBD12-1 Transcription Factor Suppresses Apical Meristem Size by Repressing Argonaute 10 Expression. Plant Physiology, 2017, 173, 801-811.	4.8	25
78	The retromer protein ZmVPS29 regulates maize kernel morphology likely through an auxinâ€dependent process(es). Plant Biotechnology Journal, 2020, 18, 1004-1014.	8.3	25
79	<i>white panicle</i> 2 encoding thioredoxin <i>z</i> , regulates plastid RNA editing by interacting with multiple organellar RNA editing factors in rice. New Phytologist, 2021, 229, 2693-2706.	7.3	24
80	Early heading 7 interacts with DTH8, and regulates flowering time in rice. Plant Cell Reports, 2019, 38, 521-532.	5.6	22
81	ZmSPL10/14/26 are required for epidermal hair cell fate specification on maize leaf. New Phytologist, 2021, 230, 1533-1549.	7.3	21
82	Determinant Factors and Regulatory Systems for Anthocyanin Biosynthesis in Rice Apiculi and Stigmas. Rice, 2021, 14, 37.	4.0	20
83	Light and Abscisic Acid Coordinately Regulate Greening of Seedlings. Plant Physiology, 2020, 183, 1281-1294.	4.8	18
84	DWARF53 interacts with transcription factors UB2/UB3/TSH4 to regulate maize tillering and tassel branching. Plant Physiology, 2021, 187, 947-962.	4.8	18
85	Hybrid Rice Breeding Welcomes a New Era of Molecular Crop Design. Scientia Sinica Vitae, 2013, 43, 864-868.	0.3	18
86	The central circadian clock proteins CCA1 and LHY regulate iron homeostasis in <i>Arabidopsis</i> . Journal of Integrative Plant Biology, 2019, 61, 168-181.	8.5	16
87	Multifaceted roles of <i>Arabidopsis</i> PP6 phosphatase in regulating cellular signaling and plant development. Plant Signaling and Behavior, 2013, 8, e22508.	2.4	14
88	<i>ZmGRAS11</i> , transactivated by Opaque2, positively regulates kernel size in maize. Journal of Integrative Plant Biology, 2021, 63, 2031-2037.	8.5	13
89	<i>UPA2</i> and <i>ZmRAVL1</i> : Promising targets of genetic improvement of maize plant architecture. Journal of Integrative Plant Biology, 2020, 62, 394-397.	8.5	10
90	Arabidopsis FHY3 and FAR1 Function in Age Gating of Leaf Senescence. Frontiers in Plant Science, 2021, 12, 770060.	3.6	10

#	Article	IF	CITATIONS
91	Overexpression of <i>ZmSPL12</i> confers enhanced lodging resistance through transcriptional regulation of <i>D1</i> in maize. Plant Biotechnology Journal, 2022, 20, 622-624.	8.3	10
92	Tetrahydrofolate Modulates Floral Transition through Epigenetic Silencing. Plant Physiology, 2017, 174, 1274-1284.	4.8	9
93	JA modulates phytochrome a signaling via repressing FHY3 activity by JAZ proteins. Plant Signaling and Behavior, 2020, 15, 1726636.	2.4	8
94	SMXL6/7/8: Dual-Function Transcriptional Repressors of Strigolactone Signaling. Molecular Plant, 2020, 13, 1244-1246.	8.3	4
95	Arabidopsis Circadian Clock Repress Phytochrome a Signaling. Frontiers in Plant Science, 2022, 13, .	3.6	4
96	Cytological evidence of BSD2 functioning in both chloroplast division and dimorphic chloroplast formation in maize leaves. BMC Plant Biology, 2020, 20, 17.	3.6	3