SÃ³nia C S Andrade

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3018980/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Hoplonemertean larvae are planktonic predators that capture and devour active animal prey. Invertebrate Biology, 2022, 141, .	0.9	4
2	Evolution, Expression Patterns, and Distribution of Novel Ribbon Worm Predatory and Defensive Toxins. Molecular Biology and Evolution, 2022, 39, .	8.9	8
3	The state of Medusozoa genomics: current evidence and future challenges. GigaScience, 2022, 11, .	6.4	8
4	Transcriptome differential expression analysis reveals the activated genes in Litopenaeus vannamei shrimp families of superior growth performance. Aquaculture, 2021, 531, 735871.	3.5	22
5	Species delimitation integrative approach reveals three new species in the Nemertopsis bivittata complex. Invertebrate Systematics, 2021, , .	1.3	5
6	Transcriptome Expression of Biomineralization Genes in <i>Littoraria flava</i> Gastropod in Brazilian Rocky Shore Reveals Evidence of Local Adaptation. Genome Biology and Evolution, 2021, 13, .	2.5	5
7	Genome-wide assessment elucidates connectivity and the evolutionary history of the highly dispersive marine invertebrate <i>Littoraria flava</i> (Littorinidae: Gastropoda). Biological Journal of the Linnean Society, 2021, 133, 999-1015.	1.6	2
8	The genome of a thorny species: comparative genomic analysis among South and North American Cactaceae. Planta, 2021, 254, 44.	3.2	8
9	Systems Biology Applied to the Study of Papaya Fruit Ripening: The Influence of Ethylene on Pulp Softening. Cells, 2021, 10, 2339.	4.1	9
10	C ₄ and crassulacean acid metabolism within a single leaf: deciphering key components behind a rare photosynthetic adaptation. New Phytologist, 2020, 225, 1699-1714.	7.3	26
11	Role of neuroendocrine modulation and biochemistry in the sepsis in Piaractus mesopotamicus. General and Comparative Endocrinology, 2020, 288, 113338.	1.8	3
12	Genomeâ€wide association study reveals genes associated with the absence of intermuscular bones in tambaqui (Colossoma macropomum). Animal Genetics, 2020, 51, 899-909.	1.7	16
13	Shedding the Light on Litopenaeus vannamei Differential Muscle and Hepatopancreas Immune Responses in White Spot Syndrome Virus (WSSV) Exposure. Genes, 2020, 11, 805.	2.4	12
14	Early pregnancy-induced transcripts in peripheral blood immune cells in Bos indicus heifers. Scientific Reports, 2020, 10, 13733.	3.3	21
15	The potential of genome-wide RAD sequences for resolving rapid radiations: a case study in Cactaceae. Molecular Phylogenetics and Evolution, 2020, 151, 106896.	2.7	16
16	Germline Mutation in MUS81 Resulting in Impaired Protein Stability is Associated with Familial Breast and Thyroid Cancer. Cancers, 2020, 12, 1289.	3.7	3
17	Transcriptome changes in muscle of Nellore cows submitted to recovery weight gain under grazing condition. Animal, 2019, 13, 333-340.	3.3	1
18	Low-intensity resistance training with partial blood flow restriction and high-intensity resistance training induce similar changes in skeletal muscle transcriptome in elderly humans. Applied Physiology, Nutrition and Metabolism, 2019, 44, 216-220.	1.9	10

SÃ³NIA C S ANDRADE

#	Article	IF	CITATIONS
19	Revisiting metazoan phylogeny with genomic sampling of all phyla. Proceedings of the Royal Society B: Biological Sciences, 2019, 286, 20190831.	2.6	229
20	Analysis of the common bean (Phaseolus vulgaris L.) transcriptome regarding efficiency of phosphorus use. PLoS ONE, 2019, 14, e0210428.	2.5	16
21	Landscape genomics to the rescue of a tropical bee threatened by habitat loss and climate change. Evolutionary Applications, 2019, 12, 1164-1177.	3.1	41
22	Is there host-associated differentiation in marine herbivorous amphipods?. Biological Journal of the Linnean Society, 2019, 126, 885-898.	1.6	3
23	Nemertean taxonomy—Implementing changes in the higher ranks, dismissing Anopla and Enopla. Zoologica Scripta, 2019, 48, 118-119.	1.7	26
24	Longissimus dorsi muscle label-free quantitative proteomic reveals biological mechanisms associated with intramuscular fat deposition. Journal of Proteomics, 2018, 179, 30-41.	2.4	53
25	Hidden diversity: Phylogeography of genus Ototyphlonemertes Diesing, 1863 (Ototyphlonemertidae:) Tj ETQq1 e0195833.	1 0.78431 2.5	4 rgBT /Over 8
26	Gene Co-expression Analysis Indicates Potential Pathways and Regulators of Beef Tenderness in Nellore Cattle. Frontiers in Genetics, 2018, 9, 441.	2.3	54
27	Data from proteomic analysis of bovine Longissimus dorsi muscle associated with intramuscular fat content. Data in Brief, 2018, 19, 1314-1317.	1.0	6
28	Litopenaeus vannamei Transcriptome Profile of Populations Evaluated for Growth Performance and Exposed to White Spot Syndrome Virus (WSSV). Frontiers in Genetics, 2018, 9, 120.	2.3	19
29	The use of metabarcoding for meiofauna ecological patterns assessment. Marine Environmental Research, 2018, 140, 160-168.	2.5	25
30	Identification of SNPs potentially related to immune responses and growth performance in <i>Litopenaeus vannamei</i> by RNA-seq analyses. PeerJ, 2018, 6, e5154.	2.0	13
31	Oviductal transcriptional profiling of a bovine fertility model by next-generation sequencing. Genomics Data, 2017, 13, 27-29.	1.3	8
32	Dynamic remodeling of endometrial extracellular matrix regulates embryo receptivity in cattle. Reproduction, 2017, 153, 49-61.	2.6	25
33	Biological and molecular characterization of a putative new potexvirus infecting Senna occidentalis. Archives of Virology, 2017, 162, 529-533.	2.1	4
34	Impact of hormonal modulation at proestrus on ovarian responses and uterine gene expression of suckled anestrous beef cows. Journal of Animal Science and Biotechnology, 2017, 8, 79.	5.3	13
35	<i>HABP2</i> p.G534E variant in patients with family history of thyroid and breast cancer. Oncotarget, 2017, 8, 40896-40905.	1.8	7
36	Differences in the skeletal muscle transcriptome profile associated with extreme values of fatty acids content. BMC Genomics, 2016, 17, 961.	2.8	54

#	Article	IF	CITATIONS
37	The future of nemertean taxonomy (phylum Nemertea) — a proposal. Zoologica Scripta, 2016, 45, 579-582.	1.7	22

At least some meiofaunal species are not everywhere. Indication of geographic, ecological and geological barriers affecting the dispersion of species of <i>Ototyphlonemertes</i> (Nemertea,) Tj ETQq0 0 0 rgBT \$@verlock 3@ Tf 50 6

39	0893 Label-free MSE proteomic analysis of the bovine skeletal muscle: New approach for meat tenderness evaluation. Journal of Animal Science, 2016, 94, 429-429.	0.5	1
40	Endometrial transcriptional profiling of a bovine fertility model by Next-Generation Sequencing. Genomics Data, 2016, 7, 26-28.	1.3	4
41	Genome organization and host range of a Brazilian isolate of johnsongrass mosaic virus. Archives of Virology, 2016, 161, 1335-1341.	2.1	7
42	Phylogenomic analyses of a Mediterranean earthworm family (Annelida: Hormogastridae). Molecular Phylogenetics and Evolution, 2016, 94, 473-478.	2.7	19
43	Integrative transcriptome analysis identifies deregulated microRNA-transcription factor networks in lung adenocarcinoma. Oncotarget, 2016, 7, 28920-28934.	1.8	49
44	Size of the Ovulatory Follicle Dictates Spatial Differences in the Oviductal Transcriptome in Cattle. PLoS ONE, 2015, 10, e0145321.	2.5	29
45	A phylogenetic backbone for Bivalvia: an RNA-seq approach. Proceedings of the Royal Society B: Biological Sciences, 2015, 282, 20142332.	2.6	110
46	Gene expression profiling by high throughput sequencing to determine signatures for the bovine receptive uterus at early gestation. Genomics Data, 2015, 5, 94-96.	1.3	2
47	Articulating "Archiannelidsâ€: Phylogenomics and Annelid Relationships, with Emphasis on Meiofaunal Taxa. Molecular Biology and Evolution, 2015, 32, 2860-2875.	8.9	128
47 48	Articulating "Archiannelids†Phylogenomics and Annelid Relationships, with Emphasis on Meiofaunal Taxa. Molecular Biology and Evolution, 2015, 32, 2860-2875. SNP and INDEL detection in a QTL region on chicken chromosome 2 associated with muscle deposition. Animal Genetics, 2015, 46, 158-163.	8.9 1.7	128 21
47 48 49	Articulating "Archiannelids†Phylogenomics and Annelid Relationships, with Emphasis on Meiofaunal Taxa. Molecular Biology and Evolution, 2015, 32, 2860-2875. SNP and INDEL detection in a QTL region on chicken chromosome 2 associated with muscle deposition. Animal Genetics, 2015, 46, 158-163. Correction to Phylogenomic analyses of deep gastropod relationships reject Orthogastropoda. Proceedings of the Royal Society B: Biological Sciences, 2015, 282, 20142941.	8.9 1.7 2.6	128 21 3
47 48 49 50	Articulating "Archiannelids†Phylogenomics and Annelid Relationships, with Emphasis on Meiofaunal Taxa. Molecular Biology and Evolution, 2015, 32, 2860-2875. SNP and INDEL detection in a QTL region on chicken chromosome 2 associated with muscle deposition. Animal Genetics, 2015, 46, 158-163. Correction to Phylogenomic analyses of deep gastropod relationships reject Orthogastropoda. Proceedings of the Royal Society B: Biological Sciences, 2015, 282, 20142941. Variant discovery in a QTL region on chromosome 3 associated with fatness in chickens. Animal Genetics, 2015, 46, 141-147.	8.9 1.7 2.6 1.7	128 21 3 28
47 48 49 50 51	Articulating "Archiannelids†Phylogenomics and Annelid Relationships, with Emphasis on Meiofaunal Taxa. Molecular Biology and Evolution, 2015, 32, 2860-2875. SNP and INDEL detection in a QTL region on chicken chromosome 2 associated with muscle deposition. Animal Genetics, 2015, 46, 158-163. Correction to Phylogenomic analyses of deep gastropod relationships reject Orthogastropoda. Proceedings of the Royal Society B: Biological Sciences, 2015, 282, 20142941. Variant discovery in a QTL region on chromosome 3 associated with fatness in chickens. Animal Genetics, 2015, 46, 141-147. The Receptive Endometrial Transcriptomic Signature Indicates an Earlier Shift from Proliferation to Metabolism at Early Diestrus in the Cow1. Biology of Reproduction, 2015, 93, 52.	8.9 1.7 2.6 1.7 2.7	128 21 3 28 40
47 48 49 50 51 52	Articulating "Archiannelidsâ€; Phylogenomics and Annelid Relationships, with Emphasis on Meiofaunal Taxa. Molecular Biology and Evolution, 2015, 32, 2860-2875. SNP and INDEL detection in a QTL region on chicken chromosome 2 associated with muscle deposition. Animal Genetics, 2015, 46, 158-163. Correction to Phylogenomic analyses of deep gastropod relationships reject Orthogastropoda. Proceedings of the Royal Society B: Biological Sciences, 2015, 282, 20142941. Variant discovery in a QTL region on chromosome 3 associated with fatness in chickens. Animal Genetics, 2015, 46, 141-147. The Receptive Endometrial Transcriptomic Signature Indicates an Earlier Shift from Proliferation to Metabolism at Early Diestrus in the Cow1. Biology of Reproduction, 2015, 93, 52. Re-evaluating the phylogeny of Sipuncula through transcriptomics. Molecular Phylogenetics and Evolution, 2015, 83, 174-183.	 8.9 1.7 2.6 1.7 2.7 2.7 	128 21 3 28 40 42
47 48 49 50 51 52 53	Articulating "Archiannelids†Phylogenomics and Annelid Relationships, with Emphasis on Meiofaunal Taxa. Molecular Biology and Evolution, 2015, 32, 2860-2875. SNP and INDEL detection in a QTL region on chicken chromosome 2 associated with muscle deposition. Animal Genetics, 2015, 46, 158-163. Correction to Phylogenomic analyses of deep gastropod relationships reject Orthogastropoda. Proceedings of the Royal Society B: Biological Sciences, 2015, 282, 20142941. Variant discovery in a QTL region on chromosome 3 associated with fatness in chickens. Animal Genetics, 2015, 46, 141-147. The Receptive Endometrial Transcriptomic Signature Indicates an Earlier Shift from Proliferation to Metabolism at Early Diestrus in the Cow1. Biology of Reproduction, 2015, 93, 52. Re-evaluating the phylogeny of Sipuncula through transcriptomics. Molecular Phylogenetics and Evolution, 2015, 83, 174-183. Comparative transcriptome analysis of early somatic embryo formation and seed development in Brazilian pine, Araucaria angustifolia (Bertol.) Kuntze. Plant Cell, Tissue and Organ Culture, 2015, 120, 903-915.	8.9 1.7 2.6 1.7 2.7 2.7 2.3	128 21 3 28 40 42 59

SÃ³NIA C S ANDRADE

#	Article	IF	CITATIONS
55	A Transcriptomic Approach to Ribbon Worm Systematics (Nemertea): Resolving the Pilidiophora Problem. Molecular Biology and Evolution, 2014, 31, 3206-3215.	8.9	68
56	Phylogenomic analyses of deep gastropod relationships reject Orthogastropoda. Proceedings of the Royal Society B: Biological Sciences, 2014, 281, 20141739.	2.6	144
57	On the identity of two Antarctic brooding nemerteans: redescription of Antarctonemertes valida (Bürger, 1893) and description of a new species in the genus Antarctonemertes Friedrich, 1955 (Nemertea, Hoplonemertea). Polar Biology, 2013, 36, 1415-1430.	1.2	14
58	Phylogenetic analysis of four nuclear protein-encoding genes largely corroborates the traditional classification of Bivalvia (Mollusca). Molecular Phylogenetics and Evolution, 2012, 65, 64-74.	2.7	66
59	Comparative description of ten transcriptomes of newly sequenced invertebrates and efficiency estimation of genomic sampling in non-model taxa. Frontiers in Zoology, 2012, 9, 33.	2.0	114
60	Disentangling ribbon worm relationships: multiâ€locus analysis supports traditional classification of the phylum Nemertea. Cladistics, 2012, 28, 141-159.	3.3	107
61	Resolving the evolutionary relationships of molluscs with phylogenomic tools. Nature, 2011, 480, 364-367.	27.8	359
62	Worms without borders: genetic diversity patterns in four Brazilian Ototyphlonemertes species (Nemertea, Hoplonemertea). Marine Biology, 2011, 158, 2109-2124.	1.5	30
63	Carinoma hamanako sp. nov. (Nemertea: Palaeonemertea), the First Representative of the Genus from the Northwest Pacific. Species Diversity, 2011, 16, 149-165.	0.4	5
64	Phylogenetic placement of a new hoplonemertean species commensal on ascidians. Invertebrate Systematics, 2010, 24, 616.	1.3	23
65	Redescription ofLineus acutifronsSouthern, 1913 (Nemertea: Pilidiophora) and comments on its phylogenetic position. Journal of Natural History, 2010, 44, 2363-2378.	0.5	16
66	Genetic variation and population structuring in two brooding coral species (Siderastrea stellata and) Tj ETQq0 0	0 rgBT /Ov	verlock 10 Tf :
67	Fine-scale genetic structure overrides macro-scale structure in a marine snail: nonrandom recruitment, demographic events or selection?. Biological Journal of the Linnean Society, 2007, 91, 23-36.	1.6	19
68	THE INFLUENCE OF SIZE ON THE RADULA OF LITTORARIA ANGULIFERA (GASTROPODA: LITTORINIDAE). Malacologia, 2006, 49, 1-5.	0.4	5
69	TRANSFER EXPERIMENT SUGGESTS ENVIRONMENTAL EFFECTS ON THE RADULA OF LITTORARIA FLAVA (GASTROPODA: LITTORINIDAE). Journal of Molluscan Studies, 2006, 72, 111-116.	1.2	17
70	Allozyme Diversity and Morphometrics of Melocactus paucispinus (Cactaceae) and Evidence for Hybridization with M. concinnus in the Chapada Diamantina, North-eastern Brazil. Annals of Botany, 2006, 97, 389-403.	2.9	40
71	Population Genetic Structure of Two Columnar Cacti with a Patchy Distribution in Eastern Brazil. Genetica, 2005, 125, 311-323.	1.1	27
72	Homogeneity Test Of Hardy-weinberg Deviations In Brazilian Littorinids: Evidence For Selection?. Journal of Molluscan Studies, 2005, 71, 167-174.	1.2	11

#	Article	IF	CITATIONS
73	Patterns of genetic variability in Brazilian Littorinids (Mollusca): a macrogeographic approach. Journal of Zoological Systematics and Evolutionary Research, 2003, 41, 249-255.	1.4	14