Jani Kotakoski

List of Publications by Year

 in descending order[^0]
1 Two-step implantation of gold into graphene. 2D Materials, 2022, 9, 025011.
2.0
10

2 Toward Exotic Layered Materials: 2D Cuprous lodide. Advanced Materials, 2022, 34, e2106922.
11.1

28

3 Beam-driven dynamics of aluminium dopants in graphene. 2D Materials, 2022, 9, 035009.
$2.0 \quad 8$

4 Indirect measurement of the carbon adatom migration barrier on graphene. Carbon, 2022, 196, 596-601.
$5.4 \quad 7$
$5 \quad$ Three-dimensional <i>ab initio<<i> description of vibration-assisted electron knock-on displacements
1.1
in graphene. Physical Review B, 2022, 105, .
$6 \quad$ Atomic and electronic structure of graphene. , 2021, , 15-26.

7 Stepâ€Byâ€Step Atomic Insights into Structural Reordering from 2D to 3D MoS 2. Advanced Functional
Materials, 2021, 31, 2008395.
7.8

9

8 Highly efficient bilateral doping of single-walled carbon nanotubes. Journal of Materials Chemistry C, 8 2021, 9, 4514-4521.

9	The morphology of doubly-clamped graphene nanoribbons. 2D Materials, 2021, 8, 025035.	$2.0 \quad 1$

10 Direct visualization of local deformations in suspended few-layer graphene membranes by coupled in situ atomic force and scanning electron microscopy. Applied Physics Letters, 2021, 118, 103104.

19	Atomic-Scale Carving of Nanopores into a van der Waals Heterostructure with Slow Highly Charged lons. ACS Nano, 2020, 14, 10536-10543.	7.3	22
20	Energy deposition of highly charged ions transmitted through single layer MoS2. Journal of Physics: Conference Series, 2020, 1412, 162018.	0.3	0
21	Cluster Superlattice Membranes. ACS Nano, 2020, 14, 13629-13637.	7.3	6
22	Diffraction of 80 eV hydrogen through suspended graphene. Journal of Physics: Conference Series, 2020, 1412, 202036.	0.3	0
23	Atomistic Understanding of Damage and Beam-driven Dynamics in 2D Materials. Microscopy and Microanalysis, 2020, 26, 542-543.	0.2	0
24	Transformation and Evaporation of Surface Adsorbents on a Graphene â€œHot Plateâ€: ACS Applied Materials \& Interfaces, 2020, 12, 26313-26319.	4.0	3
25	Scalable growth of single-walled carbon nanotubes with a highly uniform structure. Nanoscale, 2020, 12, 12263-12267.	2.8	22
26	Process Pathway Controlled Evolution of Phase and Vanâ€derâ€Waals Epitaxy in $\ln / \ln <$ sub>2<\|sub>O₃ on Graphene Heterostructures. Advanced Functional Materials, 2020, 30, 2003300.	7.8	9
27	Vanishing influence of the band gap on the charge exchange of slow highly charged ions in freestanding single-layer <mml:math xmlns:mml="http:/\|www.w3.org/1998/Math/MathML"> mml:msub mml:mi MoS</mml:mi> <mml:m Phvsical Review B. 2020. 102.		

28 CuAu, a hexagonal two-dimensional metal. 2D Materials, 2020, 7, 045017.

```
29 2D Noble Gas Crystals Encapsulated in Few-layer Graphene. Microscopy and Microanalysis, 2020, 26,
    1086-1089.
```

0.23
$30 \quad$ Kiruna-Type Ore as a Novel Precursor for Large-Scale Production of Small Uniform Iron Oxide Nanoparticles. Journal of Nanoscience and Nanotechnology, 2020, 20, 6525-6531.
$0.9 \quad 0$
Coherent diffraction of hydrogen through the 246 pm lattice of graphene. New Journal of Physics,
$2019,21,033004$.

32 Silicon Substitution in Monolayer Hexagonal Boron Nitride. Microscopy and Microanalysis, 2019, 25,
0.2
o
2082-2083.

Electronâ€Beam Manipulation of Silicon Impurities in Singleâ€Walled Carbon Nanotubes. Advanced
33 Functional Materials, 2019, 29, 1901327.
7.8

14

Direct imaging of light-element impurities in graphene reveals triple-coordinated oxygen. Nature
Communications, 2019, 10, 4570.
5.8

39

35 Electron-Beam Manipulation of Lattice Impurities in Graphene and Single-Walled Carbon Nanotubes.
Microscopy and Microanalysis, 2019, 25, 938-939.
0.2

Patterned Ultra-Thin Gold Nanostructures on Graphene. Microscopy and Microanalysis, 2019, 25,
1530-1531.
37 Substitutional Si impurities in monolayer hexagonal boron nitride. Applied Physics Letters, 2019, 115, . $\quad 1.5 \quad 16$

38 Quantifying Elastic and Inelastic Electron Irradiation Damage in Transmission Electron Microscopy of 2D Materials. Microscopy and Microanalysis, 2019, 25, 454-455.
0.21

Atomic-scale Chemical Manipulation of Materials in the Scanning Transmission Electron Microsc
under Controlled Atmospheres. Microscopy and Microanalysis, 2019, 25, 1398-1399. (Substitutional Si Doping of Graphene and Nanotubes through Ion Irradiation-Induced Vacancies

41	Enhanced Tunneling in a Hybrid of Single-Walled Carbon Nanotubes and Graphene. ACS Nano, 2019, 13, 11522-11529.	7.3	23
42	Influence of temperature on the displacement threshold energy in graphene. Scientific Reports, 2019, 9, 12981.	1.6	12
43	Direct visualization of the 3D structure of silicon impurities in graphene. Applied Physics Letters, 2019, 114,	1.5	15

44 Engineering single-atom dynamics with electron irradiation. Science Advances, 2019, 5, eaav2252.
4.7

61
Quantifying transmission electron microscopy irradiation effects using two-dimensional materials.
Nature Reviews Physics, 2019, 1, 397-405.

Scanning transmission electron microscopy under controlled low-pressure atmospheres.
46 Ultramicroscopy, 2019, 203, 76-81.
$0.8 \quad 24$
47 Silicon Substitution in Nanotubes and Graphene via Intermittent Vacancies. Journal of Physical Chemistry C, 2019, 123, 13136-13140. 27Efficient first principles simulation of electron scattering factors for transmission electron

Atomic Structure of Intrinsic and Electron-Irradiation-Induced Defects in MoTe₂.
Chemistry of Materials, 2018, 30, 1230-1238.
3.2

56

$$
\begin{aligned}
& 55 \quad \text { Graphene hybrids and extended defects: Revealing 3D structures and new insights to radiation damage. } \\
& \text { Microscopy and Microanalysis, 2018, 24, 1582-1583. }
\end{aligned}
$$

Atomic-Scale <i> in Situ</i> Observations of Crystallization and Restructuring Processes in
Two-Dimensional MoS₂ Films. ACS Nano, 2018, 12, 8758-8769.

58 Atomic-Scale Deformations at the Interface of a Mixed-Dimensional van der Waals Heterostructure.

```
In situ control of graphene ripples and strain in the electron microscope. Npj 2D Materials and
3.9 16
```0.915
Intrinsic core level photoemission of suspended monolayer graphene. Physical Review Materials, 2018, 60 2 ,
2.0 6061 Defect engineering of single- and few-layer MoS ₂ by swift heavy ion irradiation. 2DMaterials, 2017, 4, 015034.
62 Unraveling the 3D Atomic Structure of a Suspended Graphene/hBN van der Waals Heterostructure. Nano Letters, 2017, 17, 1409-1416. 4.5 84
63 Single-ato \(\begin{aligned} & \text { 021013. }\end{aligned}\) 2.0 77
Manipulating low-dimensional materials down to the level of single atoms with electron irradiation.
7.3 35
Introducing Overlapping Grain Boundaries in Chemical Vapor Deposited Hexagonal Boron Nitride 65 Monolayer Films. ACS Nano, 2017, 11, 4521-4527.
66 Buckyball sandwiches. Science Advances, 2017, 3, el700176.4.750
Grain boundary-mediated nanopores in molybdenum disulfide grown by chemical vapor deposition.
2.831Nanoscale, 2017, 9, 1591-1598.68 Creating nanoporous graphene with swift heavy ions. Carbon, 2017, 114, 511-518.5.452
69 Progress in electronics and photonics with nanomaterials. Vacuum, 2017, 146, 304-307. 1.6 272.073
Towards atomically precise manipulation of 2D nanostructures in the electron microscope. 2D 71 Towards atomically precise \(\begin{aligned} & \text { Materials, } 2017,4,042004 .\end{aligned}\)1.762
Understanding and Exploiting the Interaction of Electron Beams With Low-dimensional Materials -
73 From Controlled Atomic-level Manipulation to Circumventing Radiation Damage. Microscopy and
Microanalysis, 2017, 23, 196-197.
\(0.2 \quad 1\)

74 Structure and Energetics of Embedded Si Patterns in Graphene. Physica Status Solidi (B): Basic Research, 2017, 254, 1700188.
\(0.7 \quad 5\)
75

Structure and electronic states of a graphene double vacancy with an embedded Si dopant. Journal of
Chemical Physics, 2017, 147, 194702.
1.2

Computational insights and the observation of SiC nanograin assembly: towards 2D silicon carbide.
Scientific Reports, 2017, 7, 4399.
1.6

73

A new detection scheme for van der Waals heterostructures, imaging individual fullerenes between
graphene sheets, and controlling the vacuum in scanning transmission electron microscopy.
Microscopy and Microanalysis, 2017, 23, 460-461.
\(0.2 \quad 8\)
Microscopy and Microanalysis, 2017, 23, 460-461.
78 Visualising the strain distribution in suspended two-dimensional materials under local deformation.
Scientific Reports, 2016, 6, 28485.
1.6

37
79 Comment on â€œTemperature dependence of atomic vibrations in mono-layer grapheneâ€•[J. Appl. Phys. 118,
074302 (2015)]. Journal of Applied Physics, 2016, 119, 066101.
\(1 \quad 2\)
80 Nanopore fabrication and characterization by helium ion microscopy. Applied Physics Letters, 2016, 108, .
81 Confined linear carbon chains as a route to bulkÂcarbyne. Nature Materials, 2016, 15, 634-639.13.3341
82 Raman characterization of platinum diselenide thin films. 2D Materials, 2016, 3, 021004. 2.0 172
83 Potassium intercalated multiwalled carbon nanotubes. Carbon, 2016, 105, 90-95. 5.4 15
High-Performance Hybrid Electronic Devices from Layered PtSe₂ Films Grown at Low 7.3
84 Temperature. ACS Nano, 2016, 10, 9550-9558.310
Isotope analysis in the transmission electron microscope. Nature Communications, 2016, 7, 13040.5.864
Exploring Low-dimensional Carbon Materials by High-resolution Electron and Scanned Probe Microscopy. Microscopy and Microanalysis, 2015, 21, 1147-1148.
0

\(1.5 \quad 1\)
Structural Changes in 2D Materials Due to Scattering of Light lons. Nanoscience and Technology, 1
85 2016, , 63-88.5.8
Toward Two-Dimensional All-Carbon Heterostructures via Ion Beam Patterning of Single-Layer
Graphene. Nano Letters, 2015, 15, 5944-5949.

Towards weighing individual atoms by high-angle scattering of electrons. Ultramicroscopy, 2015, 151,
Impact of graphene polycrystallinity on the performance of graphene field-effect transistors. Applied
Physics Letters, 2014, 104, 043509.

96 Nitrogen controlled iron catalyst phase during carbon nanotube growth. Applied Physics Letters,
2014, 105,

Irradiation-induced Modifications and Beam-driven Dynamics in Low-dimensional Materials.
Microscopy and Microanalysis, 2014, 20, 1726-1727.

Siliconâ€"Carbon Bond Inversions Driven by 60-keV Electrons in Graphene. Physical Review Letters, 2014, 113, 115501.

Atomic structure and energetics of large vacancies in graphene. Physical Review B, 2014, 89, .
1.1

30

100 Imaging atomic-level random walk of a point defect in graphene. Nature Communications, 2014, 5, 3991.
5.8

103

Charge Transport in Polycrystalline Graphene: Challenges and Opportunities. Advanced Materials,
\(2014,26,5079-5094\).
11.1

166

102 Atomic structure from large-area, low-dose exposures of materials: A new route to circumvent radiation damage. Ultramicroscopy, 2014, 145, 13-21.
0.8

30

103 Atom-by-Atom STEM Investigation of Defect Engineering in Graphene. Microscopy and Microanalysis, 2014, 20, 1736-1737.

A journey from order to disorder â \(€\) " Atom by atom transformation from graphene to a 2D carbon glass. Scientific Reports, 2014, 4, 4060.
1.6

Structural manipulation of the graphene/metal interface with Ar<mml:math
105 xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline"> <mml:msup> <mml:mrow
1.1

26
|><mml:mo>+<|mml:mo></mml:msup></mml:math>irradiation. Physical Review B, 2013, 88, .

106 Defects in bilayer silica and graphene: common trends in diverse hexagonal two-dimensional systems. Scientific Reports, 2013, 3, 3482.
1.6

80

107 Inclusion of radiation damage dynamics in high-resolution transmission electron microscopy image simulations: The example of graphene. Physical Review B, 2013, 87, .
1.1

31
\(0.2 \quad 2\)
\begin{tabular}{|c|c|c|c|}
\hline 109 & Ion Impacts on Graphene/Ir(111): Interface Channeling, Vacancy Funnels, and a Nanomesh. Nano Letters, 2013, 13, 1948-1955. & 4.5 & 81 \\
\hline 110 & Probing from Both Sides: Reshaping the Graphene Landscape via Face-to-Face Dual-Probe Microscopy. Nano Letters, 2013, 13, 1934-1940. & 4.5 & 31 \\
\hline 111 & Atomic-scale effects behind structural instabilities in Si lamellae during ion beam thinning. AIP Advances, 2012, 2, . & 0.6 & 8 \\
\hline 112 & Ion irradiation tolerance of graphene as studied by atomistic simulations. Applied Physics Letters, 2012, 100, 233108. & 1.5 & 42 \\
\hline 113 & Quantitative Atomic-resolution Imaging and Spectroscopy of a 2D Silica Glass. Microscopy and Microanalysis, 2012, 18, 340-341. & 0.2 & 0 \\
\hline 114 & Imaging the Atoms in a Two-Dimensional Silica Glass on Graphene. Microscopy and Microanalysis, 2012, 18, 1496-1497. & 0.2 & 0 \\
\hline 115 & Quantitative Analysis of Electron Beam-Induced Destruction of Graphene Membranes under an Electron Microscope. Microscopy and Microanalysis, 2012, 18, 1500-1501. & 0.2 & 0 \\
\hline 116 & Atomistic Description of Electron Beam Damage in Nitrogen-Doped Graphene and Single-Walled Carbon Nanotubes. ACS Nano, 2012, 6, 8837-8846. & 7.3 & 119 \\
\hline 117 & Two-Dimensional Transition Metal Dichalcogenides under Electron Irradiation: Defect Production and Doping. Physical Review Letters, 2012, 109, 035503. & 2.9 & 960 \\
\hline 118 & Accurate Measurement of Electron Beam Induced Displacement Cross Sections for Single-Layer Graphene. Physical Review Letters, 2012, 108, 196102. & 2.9 & 383 \\
\hline 119 & Mechanical properties of polycrystalline graphene based on a realistic atomistic model. Physical Review B, 2012, 85, . & 1.1 & 181 \\
\hline 120 & Stability of Graphene Edges under Electron Beam: Equilibrium Energetics <i>versus</i> Dynamic Effects. ACS Nano, 2012, 6, 671-676. & 7.3 & 120 \\
\hline 121 & Direct Imaging of a Two-Dimensional Silica Glass on Graphene. Nano Letters, 2012, 12, 1081-1086. & 4.5 & 236 \\
\hline
\end{tabular}
122 Atom-by-Atom Observation of Grain Boundary Migration in Graphene. Nano Letters, 2012, 12, 3168-3173.
2.9

675

Production of defects in hexagonal boron nitride monolayer under ion irradiation. Nuclear Instruments \& Methods in Physics Research B, 2011, 269, 1327-1331.

Finite-size effects in the phonon density of states of nanostructured germanium: A comparative study
1.1

49
Finite-size effects in the phonon density of states of nanostructured germanium: A comparatich
of nanoparticles, nanocrystals, nanoglasses, and bulk phases. Physical Review B, 2011, 83, .

130 Effects of ion bombardment on a two-dimensional target: Atomistic simulations of graphene
1.1

341 irradiation. Physical Review B, 2010, 81, .

Nanomachining Graphene with Ion Irradiation. Materials Research Society Symposia Proceedings, 2010, 1259, 1.
\(0.1 \quad 1\)

132 Electron knock-on damage in hexagonal boron nitride monolayers. Physical Review B, 2010, 82, .
1.1

241

133 Novel High Pressure Structures of Polymeric Nitrogen. Physical Review Letters, 2009, 102, 065501.
2.9

226

134 The diffusion of carbon atoms inside carbon nanotubes. New Journal of Physics, 2008, 10, 023022.
1.2

42
\[
\begin{aligned}
& 135 \begin{array}{l}
\text { First-principles calculations on solid nitrogen: A comparative study of high-pressure phases. Physical } \\
\text { Review B, 2008, 77,. }
\end{array} \\
& 136 \quad \begin{array}{l}
\text { Relative abundance of single and double vacancies in irradiated single-walled carbon nanotubes. } \\
\text { Applied Physics Letters, 2007, 91, 173109. }
\end{array} \\
& 137 \quad \begin{array}{l}
\text { Atomistic simulations of irradiation effects in carbon nanotubes: an overview. Radiation Effects and } \\
\text { Defects in Solids, 2007, 162, 157-169. }
\end{array}
\end{aligned}
\]
1.1

45
1.5

45
\(0.4 \quad 17\)

Kinetic Monte Carlo Simulations of the Response of Carbon Nanotubes to Electron Irradiation.
138 Journal of Computational and Theoretical Nanoscience, 2007, 4, 1153-1159.
0.4

19

Energetics, structure, and long-range interaction of vacancy-type defects in carbon nanotubes:
Atomistic simulations. Physical Review B, 2006, 74, .
1.1

202
1.2

6
Binding a carbon nanotube to the \(\mathrm{Si}(100)\) surface using ion irradiationâ€" an atomistic simulation study.
New Journal of Physics, 2006, 8, 115-115.

A molecular dynamics study of the clustering of implanted potassium in multiwalled carbon
nanotubes. Nuclear Instruments \& Methods in Physics Research B, 2005, 240, 810-818.
0.6

14

Irradiation-assisted substitution of carbon atoms with nitrogen and boron in single-walled carbon nanotubes. Nuclear Instruments \& Methods in Physics Research B, 2005, 228, 31-36.```

[^0]: Source: https:/|exaly.com/author-pdf/3018484/publications.pdf
 Version: 2024-02-01

