Ian Moore

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3018299/publications.pdf Version: 2024-02-01

IAN MOORE

#	Article	IF	CITATIONS
1	A Rab1 GTPase Is Required for Transport between the Endoplasmic Reticulum and Golgi Apparatus and for Normal Golgi Movement in Plants. Plant Cell, 2000, 12, 2201-2217.	6.6	550
2	The Arabidopsis Rab GTPase family: another enigma variation. Current Opinion in Plant Biology, 2002, 5, 518-528.	7.1	309
3	Rab-A2 and Rab-A3 GTPases Define a <i>trans</i> -Golgi Endosomal Membrane Domain in <i>Arabidopsis</i> That Contributes Substantially to the Cell Plate. Plant Cell, 2008, 20, 101-123.	6.6	259
4	Redistribution of membrane proteins between the Golgi apparatus and endoplasmic reticulum in plants is reversible and not dependent on cytoskeletal networks. Plant Journal, 2002, 29, 661-678.	5.7	247
5	AtRabF2b (Ara7) acts on the vacuolar trafficking pathway in tobacco leaf epidermal cells. Journal of Cell Science, 2004, 117, 6377-6389.	2.0	154
6	A Rab-E GTPase Mutant Acts Downstream of the Rab-D Subclass in Biosynthetic Membrane Traffic to the Plasma Membrane in Tobacco Leaf Epidermis. Plant Cell, 2005, 17, 2020-2036.	6.6	124
7	The functions of Rab GTPases in plant membrane traffic. Current Opinion in Plant Biology, 2008, 11, 610-619.	7.1	94
8	The Specification of Geometric Edges by a Plant Rab GTPase Is an Essential Cell-Patterning Principle During Organogenesis in Arabidopsis. Developmental Cell, 2016, 36, 386-400.	7.0	67
9	<i>Arabidopsis</i> Rab-E GTPases exhibit a novel interaction with a plasma-membrane phosphatidylinositol-4-phosphate 5-kinase. Journal of Cell Science, 2009, 122, 4383-4392.	2.0	60
10	Genetic evidence that the higher plant Rab-D1 and Rab-D2 GTPases exhibit distinct but overlapping interactions in the early secretory pathway. Journal of Cell Science, 2009, 122, 3749-3758.	2.0	60
11	Two mechanisms regulate directional cell growth in Arabidopsis lateral roots. ELife, 2019, 8, .	6.0	29
12	Interactions between Transport Protein Particle (TRAPP) complexes and Rab <scp>GTP</scp> ases in Arabidopsis. Plant Journal, 2019, 100, 279-297.	5.7	27
13	Spatio-temporal control of post-Golgi exocytic trafficking in plants. Journal of Cell Science, 2020, 133,	2.0	25
14	AtRAB-H1b and AtRAB-H1c GTPases, homologues of the yeast Ypt6, target reporter proteins to the Golgi when expressed in Nicotiana tabacum and Arabidopsis thaliana. Journal of Experimental Botany, 2009, 60, 3179-3193.	4.8	19