Hyo-Jun Lee

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3018285/publications.pdf Version: 2024-02-01

HVO-LUN LEE

#	Article	IF	CITATIONS
1	Sound Waves Promote Arabidopsis thaliana Root Growth by Regulating Root Phytohormone Content. International Journal of Molecular Sciences, 2021, 22, 5739.	4.1	12
2	FERONIA Confers Resistance to Photooxidative Stress in Arabidopsis. Frontiers in Plant Science, 2021, 12, 714938.	3.6	7
3	<scp>PIN</scp> â€mediated polar auxin transport facilitates rootâ^'obstacle avoidance. New Phytologist, 2020, 225, 1285-1296.	7.3	39
4	Developmental Programming of Thermonastic Leaf Movement. Plant Physiology, 2019, 180, 1185-1197.	4.8	70
5	HOS1 acts as a key modulator of hypocotyl photomorphogenesis. Plant Signaling and Behavior, 2017, 12, e1315497.	2.4	7
6	<scp>COP</scp> 1 conveys warm temperature information to hypocotyl thermomorphogenesis. New Phytologist, 2017, 215, 269-280.	7.3	118
7	HOS1 Facilitates the Phytochrome B-Mediated Inhibition of PIF4 Function during Hypocotyl Growth in Arabidopsis. Molecular Plant, 2017, 10, 274-284.	8.3	31
8	Thermo-Induced Maintenance of Photo-oxidoreductases Underlies Plant Autotrophic Development. Developmental Cell, 2017, 41, 170-179.e4.	7.0	11
9	ZEITLUPE Contributes to a Thermoresponsive Protein Quality Control System in Arabidopsis. Plant Cell, 2017, 29, 2882-2894.	6.6	64
10	Environmental Adaptation of the Heterotrophic-to-Autotrophic Transition: The Developmental Plasticity of Seedling Establishment. Critical Reviews in Plant Sciences, 2017, 36, 128-137.	5.7	11
11	Multiple Routes of Light Signaling during Root Photomorphogenesis. Trends in Plant Science, 2017, 22, 803-812.	8.8	48
12	Alternative splicing provides a proactive mechanism for the diurnal CONSTANS dynamics in Arabidopsis photoperiodic flowering. Plant Journal, 2017, 89, 128-140.	5.7	34
13	An FCA-mediated epigenetic route towards thermal adaptation of autotrophic development in plants. BMB Reports, 2017, 50, 343-344.	2.4	2
14	Underground roots monitor aboveground environment by sensing stem-piped light. Communicative and Integrative Biology, 2016, 9, e1261769.	1.4	14
15	Stem-piped light activates phytochrome B to trigger light responses in <i>Arabidopsis thaliana</i> roots. Science Signaling, 2016, 9, ra106.	3.6	145
16	SPL3/4/5 Integrate Developmental Aging andÂPhotoperiodic Signals into the FT-FD Module in Arabidopsis Flowering. Molecular Plant, 2016, 9, 1647-1659.	8.3	125
17	Systemic Immunity Requires SnRK2.8-Mediated Nuclear Import of NPR1 in Arabidopsis. Plant Cell, 2015, 27, 3425-3438.	6.6	104
18	The unified ICE–CBF pathway provides a transcriptional feedback control of freezing tolerance during cold acclimation in Arabidopsis. Plant Molecular Biology, 2015, 89, 187-201.	3.9	133

Hyo-Jun Lee

#	Article	IF	CITATIONS
19	The <i><scp>A</scp>rabidopsis thaliana </i> <scp>RNA</scp> â€binding protein <scp>FCA</scp> regulates thermotolerance by modulating the detoxification of reactive oxygen species. New Phytologist, 2015, 205, 555-569.	7.3	36
20	FCA mediates thermal adaptation of stem growth by attenuating auxin action in Arabidopsis. Nature Communications, 2014, 5, 5473.	12.8	87
21	The Arabidopsis NAC transcription factor NTL4 participates in a positive feedback loop that induces programmed cell death under heat stress conditions. Plant Science, 2014, 227, 76-83.	3.6	65
22	Beyond ubiquitination: proteolytic and nonproteolytic roles of HOS1. Trends in Plant Science, 2014, 19, 538-545.	8.8	19
23	A NAC transcription factor NTL4 promotes reactive oxygen species production during droughtâ€induced leaf senescence in Arabidopsis. Plant Journal, 2012, 70, 831-844.	5.7	360