Lewis C Cantley

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3017154/publications.pdf Version: 2024-02-01

		49	49
578	167,273	184	396
papers	citations	h-index	g-index
622	622	622	128601
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	Understanding the Warburg Effect: The Metabolic Requirements of Cell Proliferation. Science, 2009, 324, 1029-1033.	6.0	12,186
2	AKT/PKB Signaling: Navigating Downstream. Cell, 2007, 129, 1261-1274.	13.5	5,261
3	The Phosphoinositide 3-Kinase Pathway. Science, 2002, 296, 1655-1657.	6.0	5,004
4	MET Amplification Leads to Gefitinib Resistance in Lung Cancer by Activating ERBB3 Signaling. Science, 2007, 316, 1039-1043.	6.0	4,187
5	Cancer-associated IDH1 mutations produce 2-hydroxyglutarate. Nature, 2009, 462, 739-744.	13.7	3,315
6	Oncogenes and signal transduction. Cell, 1991, 64, 281-302.	13.5	2,874
7	The evolution of phosphatidylinositol 3-kinases as regulators of growth and metabolism. Nature Reviews Genetics, 2006, 7, 606-619.	7.7	2,833
8	SH2 domains recognize specific phosphopeptide sequences. Cell, 1993, 72, 767-778.	13.5	2,735
9	The M2 splice isoform of pyruvate kinase is important for cancer metabolism and tumour growth. Nature, 2008, 452, 230-233.	13.7	2,423
10	New insights into tumor suppression: PTEN suppresses tumor formation by restraining the phosphoinositide 3-kinase/AKT pathway. Proceedings of the National Academy of Sciences of the United States of America, 1999, 96, 4240-4245.	3.3	1,843
11	Ras, PI(3)K and mTOR signalling controls tumour cell growth. Nature, 2006, 441, 424-430.	13.7	1,839
12	The Kinase LKB1 Mediates Glucose Homeostasis in Liver and Therapeutic Effects of Metformin. Science, 2005, 310, 1642-1646.	6.0	1,704
13	The PI3K Pathway in Human Disease. Cell, 2017, 170, 605-635.	13.5	1,702
14	PI3K pathway alterations in cancer: variations on a theme. Oncogene, 2008, 27, 5497-5510.	2.6	1,621
15	Oncogenic Kras Maintains Pancreatic Tumors through Regulation of Anabolic Glucose Metabolism. Cell, 2012, 149, 656-670.	13.5	1,587
16	PI3K: Downstream AKTion Blocks Apoptosis. Cell, 1997, 88, 435-437.	13.5	1,580
17	Glutamine supports pancreatic cancer growth through a KRAS-regulated metabolic pathway. Nature, 2013, 496, 101-105.	13.7	1,562
18	The tumor suppressor LKB1 kinase directly activates AMP-activated kinase and regulates apoptosis in response to energy stress. Proceedings of the National Academy of Sciences of the United States of America, 2004, 101, 3329-3335.	3.3	1,561

#	Article	IF	CITATIONS
19	The Structural Basis for 14-3-3:Phosphopeptide Binding Specificity. Cell, 1997, 91, 961-971.	13.5	1,509
20	Bidirectional Transport of Amino Acids Regulates mTOR and Autophagy. Cell, 2009, 136, 521-534.	13.5	1,478
21	Scansite 2.0: proteome-wide prediction of cell signaling interactions using short sequence motifs. Nucleic Acids Research, 2003, 31, 3635-3641.	6.5	1,455
22	Direct Regulation of the Akt Proto-Oncogene Product by Phosphatidylinositol-3,4-bisphosphate. Science, 1997, 275, 665-668.	6.0	1,437
23	Large-scale characterization of HeLa cell nuclear phosphoproteins. Proceedings of the National Academy of Sciences of the United States of America, 2004, 101, 12130-12135.	3.3	1,434
24	Identification of the Tuberous Sclerosis Complex-2 Tumor Suppressor Gene Product Tuberin as a Target of the Phosphoinositide 3-Kinase/Akt Pathway. Molecular Cell, 2002, 10, 151-162.	4.5	1,376
25	PHOSPHOINOSITIDE KINASES. Annual Review of Biochemistry, 1998, 67, 481-507.	5.0	1,366
26	Recognition of Unique Carboxyl-Terminal Motifs by Distinct PDZ Domains. Science, 1997, 275, 73-77.	6.0	1,329
27	Signalling through the lipid products of phosphoinositide-3-OH kinase. Nature, 1997, 387, 673-676.	13.7	1,290
28	Effective use of PI3K and MEK inhibitors to treat mutant Kras G12D and PIK3CA H1047R murine lung cancers. Nature Medicine, 2008, 14, 1351-1356.	15.2	1,238
29	Targeting the PI3K-Akt pathway in human cancer. Cancer Cell, 2003, 4, 257-262.	7.7	1,230
30	Inhibition of mTORC1 leads to MAPK pathway activation through a PI3K-dependent feedback loop in human cancer. Journal of Clinical Investigation, 2008, 118, 3065-74.	3.9	1,132
31	Tuberous Sclerosis Complex Gene Products, Tuberin and Hamartin, Control mTOR Signaling by Acting as a GTPase-Activating Protein Complex toward Rheb. Current Biology, 2003, 13, 1259-1268.	1.8	1,047
32	Type I phosphatidylinositol kinase makes a novel inositol phospholipid, phosphatidylinositol-3-phosphate. Nature, 1988, 332, 644-646.	13.7	1,015
33	Chromosomal instability drives metastasis through a cytosolic DNA response. Nature, 2018, 553, 467-472.	13.7	1,002
34	Oncogene ablation-resistant pancreatic cancer cells depend on mitochondrial function. Nature, 2014, 514, 628-632.	13.7	998
35	Inhibition of Pyruvate Kinase M2 by Reactive Oxygen Species Contributes to Cellular Antioxidant Responses. Science, 2011, 334, 1278-1283.	6.0	984
36	Cancer metabolism: fatty acid oxidation in the limelight. Nature Reviews Cancer, 2013, 13, 227-232.	12.8	969

#	Article	IF	CITATIONS
37	The LKB1 tumor suppressor negatively regulates mTOR signaling. Cancer Cell, 2004, 6, 91-99.	7.7	956
38	Specific recruitment of SH-PTP1 to the erythropoietin receptor causes inactivation of JAK2 and termination of proliferative signals. Cell, 1995, 80, 729-738.	13.5	952
39	Phosphoglycerate dehydrogenase diverts glycolytic flux and contributes to oncogenesis. Nature Genetics, 2011, 43, 869-874.	9.4	945
40	PDGF-dependent tyrosine phosphorylation stimulates production of novel polyphosphoinositides in intact cells. Cell, 1989, 57, 167-175.	13.5	943
41	Catalytic specificity of protein-tyrosine kinases is critical for selective signalling. Nature, 1995, 373, 536-539.	13.7	932
42	The Role of Phosphoinositide 3-Kinase Lipid Products in Cell Function. Journal of Biological Chemistry, 1999, 274, 8347-8350.	1.6	897
43	Pyruvate kinase M2 is a phosphotyrosine-binding protein. Nature, 2008, 452, 181-186.	13.7	881
44	Association of phosphatidylinositol kinase activity with polyoma middle-T competent for transformation. Nature, 1985, 315, 239-242.	13.7	845
45	Pancreatic stellate cells support tumour metabolism through autophagic alanine secretion. Nature, 2016, 536, 479-483.	13.7	843
46	A colorectal cancer classification system that associates cellular phenotype and responses to therapy. Nature Medicine, 2013, 19, 619-625.	15.2	831
47	Phosphoproteomic Analysis Identifies Grb10 as an mTORC1 Substrate That Negatively Regulates Insulin Signaling. Science, 2011, 332, 1322-1326.	6.0	772
48	Sequence-Specific and Phosphorylation-Dependent Proline Isomerization: A Potential Mitotic Regulatory Mechanism. Science, 1997, 278, 1957-1960.	6.0	760
49	Tuberous sclerosis complex-1 and -2 gene products function together to inhibit mammalian target of rapamycin (mTOR)-mediated downstream signaling. Proceedings of the National Academy of Sciences of the United States of America, 2002, 99, 13571-13576.	3.3	744
50	Personalized <i>In Vitro</i> and <i>In Vivo</i> Cancer Models to Guide Precision Medicine. Cancer Discovery, 2017, 7, 462-477.	7.7	735
51	Vascular Dysmorphogenesis Caused by an Activating Mutation in the Receptor Tyrosine Kinase TIE2. Cell, 1996, 87, 1181-1190.	13.5	734
52	Vitamin C selectively kills <i>KRAS</i> and <i>BRAF</i> mutant colorectal cancer cells by targeting GAPDH. Science, 2015, 350, 1391-1396.	6.0	722
53	Common elements in growth factor stimulation and oncogenic transformation: 85 kd phosphoprotein and phosphatidylinositol kinase activity. Cell, 1987, 50, 1021-1029.	13.5	708
54	ERK1/2-dependent phosphorylation and nuclear translocation of PKM2 promotes the Warburg effect. Nature Cell Biology, 2012, 14, 1295-1304.	4.6	693

#	Article	IF	CITATIONS
55	The Molecular Basis for Phosphodependent Substrate Targeting and Regulation of Plks by the Polo-Box Domain. Cell, 2003, 115, 83-95.	13.5	687
56	Regulation of mTORC1 by PI3K signaling. Trends in Cell Biology, 2015, 25, 545-555.	3.6	636
57	Proteomic Screen Finds pSer/pThr-Binding Domain Localizing Plk1 to Mitotic Substrates. Science, 2003, 299, 1228-1231.	6.0	634
58	Tyrosine Phosphorylation Inhibits PKM2 to Promote the Warburg Effect and Tumor Growth. Science Signaling, 2009, 2, ra73.	1.6	632
59	Insect cell-expressed p180erbB3 possesses an impaired tyrosine kinase activity Proceedings of the National Academy of Sciences of the United States of America, 1994, 91, 8132-8136.	3.3	625
60	Spatial Control of the TSC Complex Integrates Insulin and Nutrient Regulation of mTORC1 at the Lysosome. Cell, 2014, 156, 771-785.	13.5	625
61	TAZ: a novel transcriptional co-activator regulated by interactions with 14-3-3 and PDZ domain proteins. EMBO Journal, 2000, 19, 6778-6791.	3.5	623
62	Use of an oriented peptide library to determine the optimal substrates of protein kinases. Current Biology, 1994, 4, 973-982.	1.8	616
63	Pyruvate kinase M2 activators promote tetramer formation and suppress tumorigenesis. Nature Chemical Biology, 2012, 8, 839-847.	3.9	614
64	A neu acquaintance for ErbB3 and ErbB4: A role for receptor heterodimerization in growth signaling. Cell, 1994, 78, 5-8.	13.5	603
65	Impaired B Cell Development and Proliferation in Absence of Phosphoinositide 3-Kinase p85. Science, 1999, 283, 393-397.	6.0	603
66	Phosphatidylinositol 3-kinase. BioEssays, 1994, 16, 565-576.	1.2	601
67	Evidence for an Alternative Glycolytic Pathway in Rapidly Proliferating Cells. Science, 2010, 329, 1492-1499.	6.0	586
68	NRF2 regulates serine biosynthesis in non–small cell lung cancer. Nature Genetics, 2015, 47, 1475-1481.	9.4	579
69	Phosphoinositide kinases. Current Opinion in Cell Biology, 1996, 8, 153-158.	2.6	577
70	The PX domains of p47phox and p40phox bind to lipid products of PI(3)K. Nature Cell Biology, 2001, 3, 675-678.	4.6	567
71	Affinity-Driven Peptide Selection of an NFAT Inhibitor More Selective Than Cyclosporin A. Science, 1999, 285, 2129-2133.	6.0	562
72	Influence of Threonine Metabolism on <i>S</i> -Adenosylmethionine and Histone Methylation. Science, 2013, 339, 222-226.	6.0	555

#	Article	IF	CITATIONS
73	Activation of phosphatidylinositol 3-kinase by insulin Proceedings of the National Academy of Sciences of the United States of America, 1990, 87, 1411-1415.	3.3	544
74	The conserved phosphoinositide 3-kinase pathway determines heart size in mice. EMBO Journal, 2000, 19, 2537-2548.	3.5	533
75	Determination of protease cleavage site motifs using mixture-based oriented peptide libraries. Nature Biotechnology, 2001, 19, 661-667.	9.4	524
76	Determination of the Specific Substrate Sequence Motifs of Protein Kinase C Isozymes. Journal of Biological Chemistry, 1997, 272, 952-960.	1.6	516
77	A motif-based profile scanning approach for genome-wide prediction of signaling pathways. Nature Biotechnology, 2001, 19, 348-353.	9.4	509
78	AMPK-Dependent Degradation of TXNIP upon Energy Stress Leads to Enhanced Glucose Uptake via GLUT1. Molecular Cell, 2013, 49, 1167-1175.	4.5	508
79	The mTORC1 Pathway Stimulates Glutamine Metabolism and Cell Proliferation by Repressing SIRT4. Cell, 2013, 153, 840-854.	13.5	505
80	Targeting the PI3K signaling pathway in cancer. Current Opinion in Genetics and Development, 2010, 20, 87-90.	1.5	494
81	Akt/Protein Kinase B Promotes Organ Growth in Transgenic Mice. Molecular and Cellular Biology, 2002, 22, 2799-2809.	1.1	481
82	A PtdInsP3- and Rho GTPase-mediated positive feedback loop regulates neutrophil polarity. Nature Cell Biology, 2002, 4, 509-513.	4.6	480
83	Stem cell metabolism in tissue development and aging. Development (Cambridge), 2013, 140, 2535-2547.	1.2	477
84	Suppression of insulin feedback enhances the efficacy of PI3K inhibitors. Nature, 2018, 560, 499-503.	13.7	477
85	Evidence that the Rous sarcoma virus transforming gene product phosphorylates phosphatidylinositol and diacylglycerol Proceedings of the National Academy of Sciences of the United States of America, 1984, 81, 2117-2121.	3.3	474
86	Distinct roles of class I and class III phosphatidylinositol 3-kinases in phagosome formation and maturation. Journal of Cell Biology, 2001, 155, 19-26.	2.3	474
87	ErbB-3 mediates phosphoinositide 3-kinase activity in gefitinib-sensitive non-small cell lung cancer cell lines. Proceedings of the National Academy of Sciences of the United States of America, 2005, 102, 3788-3793.	3.3	472
88	Structural Analysis of 14-3-3 Phosphopeptide Complexes Identifies a Dual Role for the Nuclear Export Signal of 14-3-3 in Ligand Binding. Molecular Cell, 1999, 4, 153-166.	4.5	467
89	The PHD Finger of the Chromatin-Associated Protein ING2 Functions as a Nuclear Phosphoinositide Receptor. Cell, 2003, 114, 99-111.	13.5	467
90	ras-transformed cells: altered levels of phosphatidylinositol-4,5-bisphosphate and catabolites. Science, 1986, 231, 407-410.	6.0	465

#	Article	IF	CITATIONS
91	Breast Cancer–Associated PIK3CA Mutations Are Oncogenic in Mammary Epithelial Cells. Cancer Research, 2005, 65, 10992-11000.	0.4	456
92	A new pathway for synthesis of phosphatidylinositol-4,5-bisphosphate. Nature, 1997, 390, 192-196.	13.7	448
93	Rho Family GTPases Bind to Phosphoinositide Kinases. Journal of Biological Chemistry, 1995, 270, 17656-17659.	1.6	445
94	Rheb fills a GAP between TSC and TOR. Trends in Biochemical Sciences, 2003, 28, 573-576.	3.7	443
95	A murine lung cancer co-clinical trial identifies genetic modifiers of therapeutic response. Nature, 2012, 483, 613-617.	13.7	430
96	PKM2 Isoform-Specific Deletion Reveals a Differential Requirement for Pyruvate Kinase in Tumor Cells. Cell, 2013, 155, 397-409.	13.5	429
97	Allelic dilution obscures detection of a biologically significant resistance mutation in EGFR-amplified lung cancer. Journal of Clinical Investigation, 2006, 116, 2695-2706.	3.9	423
98	The Multifaceted Role of Chromosomal Instability in Cancer and Its Microenvironment. Cell, 2018, 174, 1347-1360.	13.5	422
99	A Comparative Analysis of the Phosphoinositide Binding Specificity of Pleckstrin Homology Domains. Journal of Biological Chemistry, 1997, 272, 22059-22066.	1.6	420
100	High Frequency of <i>PIK3R1</i> and <i>PIK3R2</i> Mutations in Endometrial Cancer Elucidates a Novel Mechanism for Regulation of PTEN Protein Stability. Cancer Discovery, 2011, 1, 170-185.	7.7	419
101	Phosphatidylinositol-3,4,5-trisphosphate (PtdIns-3,4,5-P3)/Tec kinase-dependent calcium signaling pathway: a target for SHIP-mediated inhibitory signals. EMBO Journal, 1998, 17, 1961-1972.	3.5	418
102	MicroRNA-Antagonism Regulates Breast Cancer Stemness and Metastasis via TET-Family-Dependent Chromatin Remodeling. Cell, 2013, 154, 311-324.	13.5	417
103	Evidence that Inositol Polyphosphate 4-Phosphatase Type II Is a Tumor Suppressor that Inhibits PI3K Signaling. Cancer Cell, 2009, 16, 115-125.	7.7	411
104	Transformation of Chicken Cells by the Gene Encoding the Catalytic Subunit of PI 3-Kinase. Science, 1997, 276, 1848-1850.	6.0	398
105	Identification of SARS-CoV-2 inhibitors using lung and colonic organoids. Nature, 2021, 589, 270-275.	13.7	389
106	Combining a PI3K Inhibitor with a PARP Inhibitor Provides an Effective Therapy for BRCA1-Related Breast Cancer. Cancer Discovery, 2012, 2, 1048-1063.	7.7	384
107	Vanadate inhibits the red cell (Na+, K+) ATPase from the cytoplasmic side. Nature, 1978, 272, 552-554.	13.7	381
108	Heterogeneity of tumor-induced gene expression changes in the human metabolic network. Nature Biotechnology, 2013, 31, 522-529.	9.4	381

7

#	Article	IF	CITATIONS
109	MUC1 and HIF-1alpha Signaling Crosstalk Induces Anabolic Glucose Metabolism to Impart Gemcitabine Resistance to Pancreatic Cancer. Cancer Cell, 2017, 32, 71-87.e7.	7.7	373
110	In vivo near-infrared fluorescence imaging of osteoblastic activity. Nature Biotechnology, 2001, 19, 1148-1154.	9.4	371
111	Metabolic Flux and the Regulation of Mammalian Cell Growth. Cell Metabolism, 2011, 14, 443-451.	7.2	371
112	Cancer-associated IDH1 mutations produce 2-hydroxyglutarate. Nature, 2010, 465, 966-966.	13.7	360
113	Interaction of Shc with the zeta chain of the T cell receptor upon T cell activation. Science, 1993, 262, 902-905.	6.0	357
114	The colony stimulating factor-1 receptor associates with and activates phosphatidylinositol-3 kinase. Nature, 1989, 342, 699-702.	13.7	354
115	Phosphoinositide kinases. Biochemistry, 1990, 29, 11147-11156.	1.2	353
116	Recognition and specificity in protein tyrosine kinase-mediated signalling. Trends in Biochemical Sciences, 1995, 20, 470-475.	3.7	353
117	The alternative splicing repressors hnRNP A1/A2 and PTB influence pyruvate kinase isoform expression and cell metabolism. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 1894-1899.	3.3	351
118	Peptide and Protein Library Screening Defines Optimal Substrate Motifs for AKT/PKB. Journal of Biological Chemistry, 2000, 275, 36108-36115.	1.6	349
119	Lipid second messengers. Cell, 1994, 77, 329-334.	13.5	346
120	The Crohn's Disease Protein, NOD2, Requires RIP2 in Order to Induce Ubiquitinylation of a Novel Site on NEMO. Current Biology, 2004, 14, 2217-2227.	1.8	344
121	A rapid method for determining protein kinase phosphorylation specificity. Nature Methods, 2004, 1, 27-29.	9.0	340
122	Interleukin 3-dependent survival by the Akt protein kinase. Proceedings of the National Academy of Sciences of the United States of America, 1997, 94, 11345-11350.	3.3	339
123	Systemic Elevation of PTEN Induces a Tumor-Suppressive Metabolic State. Cell, 2012, 149, 49-62.	13.5	339
124	The Mycobacterium tuberculosis serine/threonine kinases PknA and PknB: substrate identification and regulation of cell shape. Genes and Development, 2005, 19, 1692-1704.	2.7	334
125	Lin28 Enhances Tissue Repair by Reprogramming Cellular Metabolism. Cell, 2013, 155, 778-792.	13.5	322
126	Oncogenic B-RAF Negatively Regulates the Tumor Suppressor LKB1 to Promote Melanoma Cell Proliferation. Molecular Cell, 2009, 33, 237-247.	4.5	318

#	Article	IF	CITATIONS
127	Phosphatidylinositol (3,4,5)P3 interacts with SH2 domains and modulates PI 3-kinase association with tyrosine-phosphorylated proteins. Cell, 1995, 83, 821-830.	13.5	309
128	<i>PIK3CA</i> Mutation Is Associated With Poor Prognosis Among Patients With Curatively Resected Colon Cancer. Journal of Clinical Oncology, 2009, 27, 1477-1484.	0.8	303
129	Phosphoinositide 3-Kinase Regulates Glycolysis through Mobilization of Aldolase from the Actin Cytoskeleton. Cell, 2016, 164, 433-446.	13.5	301
130	Structure and Mechanism of the (Na,K)-ATPase. Current Topics in Bioenergetics, 1981, 11, 201-237.	2.7	299
131	PtdIns(3,4,5) <i>P</i> 3-Dependent Activation of the mTORC2 Kinase Complex. Cancer Discovery, 2015, 5, 1194-1209.	7.7	297
132	Differential Effects of Gefitinib and Cetuximab on Non–small-cell Lung Cancers Bearing Epidermal Growth Factor Receptor Mutations. Journal of the National Cancer Institute, 2005, 97, 1185-1194.	3.0	294
133	The Peutz-Jegher Gene Product LKB1 Is a Mediator of p53-Dependent Cell Death. Molecular Cell, 2001, 7, 1307-1319.	4.5	293
134	Acute effects of leptin require PI3K signaling in hypothalamic proopiomelanocortin neurons in mice. Journal of Clinical Investigation, 2008, 118, 1796-1805.	3.9	293
135	Cell-State-Specific Metabolic Dependency in Hematopoiesis and Leukemogenesis. Cell, 2014, 158, 1309-1323.	13.5	289
136	Stimulation of the T3-T cell receptor complex induces a membrane-potential-sensitive calcium influx. Cell, 1985, 40, 583-590.	13.5	286
137	Cell-cycle-regulated activation of Akt kinase by phosphorylation at its carboxyl terminus. Nature, 2014, 508, 541-545.	13.7	285
138	Signal transduction and membrane traffic: The PITP/phosphoinositide connection. Cell, 1995, 81, 659-662.	13.5	280
139	SRPK2: A Differentially Expressed SR Protein-specific Kinase Involved in Mediating the Interaction and Localization of Pre-mRNA Splicing Factors in Mammalian Cells. Journal of Cell Biology, 1998, 140, 737-750.	2.3	274
140	Hypoglycaemia, liver necrosis and perinatal death in mice lacking all isoforms of phosphoinositide 3-kinase p851±. Nature Genetics, 2000, 26, 379-382.	9.4	273
141	Protein Sequences from Mastodon and Tyrannosaurus Rex Revealed by Mass Spectrometry. Science, 2007, 316, 280-285.	6.0	273
142	T-cell antigen CD28 interacts with the lipid kinase phosphatidylinositol 3-kinase by a cytoplasmic Tyr(P)-Met-Xaa-Met motif Proceedings of the National Academy of Sciences of the United States of America, 1994, 91, 2834-2838.	3.3	271
143	A Phase Ib Study of Alpelisib (BYL719), a PI3Kα-Specific Inhibitor, with Letrozole in ER+/HER2â^' Metastatic Breast Cancer. Clinical Cancer Research, 2017, 23, 26-34.	3.2	268
144	Isolation of a potent (Na -K) stimulated ATPase inhibitor from striated muscle. Biochemistry, 1977, 16, 4572-4578.	1.2	265

#	Article	IF	CITATIONS
145	Juxtamembrane tyrosine residues couple the Eph family receptor EphB2/Nuk to specific SH2 domain proteins in neuronal cells. EMBO Journal, 1997, 16, 3877-3888.	3.5	264
146	Akt–RSK–S6 Kinase Signaling Networks Activated by Oncogenic Receptor Tyrosine Kinases. Science Signaling, 2010, 3, ra64.	1.6	263
147	Diverse Biochemical Properties of Shp2 Mutants. Journal of Biological Chemistry, 2005, 280, 30984-30993.	1.6	256
148	Molecular Balance between the Regulatory and Catalytic Subunits of Phosphoinositide 3-Kinase Regulates Cell Signaling and Survival. Molecular and Cellular Biology, 2002, 22, 965-977.	1.1	254
149	Divergent regulation of hepatic glucose and lipid metabolism by phosphoinositide 3-kinase via Akt and PKCλ/ζ. Cell Metabolism, 2006, 3, 343-353.	7.2	249
150	Biochemical Interactions Integrating Itk with the T Cell Receptor-initiated Signaling Cascade. Journal of Biological Chemistry, 2000, 275, 2219-2230.	1.6	244
151	Regulation of epithelial tight junction assembly and disassembly by AMP-activated protein kinase. Proceedings of the National Academy of Sciences of the United States of America, 2007, 104, 819-822.	3.3	244
152	Targeting cancer vulnerabilities with high-dose vitamin C. Nature Reviews Cancer, 2019, 19, 271-282.	12.8	244
153	High-fructose corn syrup enhances intestinal tumor growth in mice. Science, 2019, 363, 1345-1349.	6.0	243
154	Identification of a small molecule inhibitor of 3-phosphoglycerate dehydrogenase to target serine biosynthesis in cancers. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, 1778-1783.	3.3	239
155	Crystal Structures of the XLP Protein SAP Reveal a Class of SH2 Domains with Extended, Phosphotyrosine-Independent Sequence Recognition. Molecular Cell, 1999, 4, 555-561.	4.5	237
156	Glucose Addiction of TSC Null Cells Is Caused by Failed mTORC1-Dependent Balancing of Metabolic Demand with Supply. Molecular Cell, 2010, 38, 487-499.	4.5	236
157	p70S6 Kinase Phosphorylates AMPK on Serine 491 to Mediate Leptin's Effect on Food Intake. Cell Metabolism, 2012, 16, 104-112.	7.2	236
158	Obesity and Cancer Mechanisms: Cancer Metabolism. Journal of Clinical Oncology, 2016, 34, 4277-4283.	0.8	236
159	Type Iα phosphatidylinositol-4-phosphate 5-kinase mediates Rac-dependent actin assembly. Current Biology, 2000, 10, 153-156.	1.8	233
160	Chemical Genetic Screen for AMPKα2 Substrates Uncovers a Network of Proteins Involved in Mitosis. Molecular Cell, 2011, 44, 878-892.	4.5	232
161	Phosphatidylinositol metabolism and polyoma-mediated transformation Proceedings of the National Academy of Sciences of the United States of America, 1986, 83, 3624-3628.	3.3	228
162	Increased insulin sensitivity in mice lacking p85Â subunit of phosphoinositide 3-kinase. Proceedings of the National Academy of Sciences of the United States of America, 2002, 99, 419-424.	3.3	228

#	Article	IF	CITATIONS
163	The SH3 Domain of Amphiphysin Binds the Proline-rich Domain of Dynamin at a Single Site That Defines a New SH3 Binding Consensus Sequence. Journal of Biological Chemistry, 1997, 272, 13419-13425.	1.6	227
164	The C2 Domain of PKCδ Is a Phosphotyrosine Binding Domain. Cell, 2005, 121, 271-280.	13.5	225
165	Rac1 Regulates the Activity of mTORC1 and mTORC2 and Controls Cellular Size. Molecular Cell, 2011, 42, 50-61.	4.5	225
166	Active Pin1 is a key target of all-trans retinoic acid in acute promyelocytic leukemia and breast cancer. Nature Medicine, 2015, 21, 457-466.	15.2	220
167	Corequirement of Specific Phosphoinositides and Small GTP-binding Protein Cdc42 in Inducing Actin Assembly in Xenopus Egg Extracts. Journal of Cell Biology, 1998, 140, 1125-1136.	2.3	219
168	Feedback inhibition of Akt signaling limits the growth of tumors lacking Tsc2. Genes and Development, 2005, 19, 1773-1778.	2.7	216
169	Biomolecular Characterization and Protein Sequences of the Campanian Hadrosaur <i>B. canadensis</i> . Science, 2009, 324, 626-631.	6.0	212
170	mTOR Drives Its Own Activation via SCFβTrCP-Dependent Degradation of the mTOR Inhibitor DEPTOR. Molecular Cell, 2011, 44, 290-303.	4.5	212
171	A labelâ€free quantification method by MS/MS TIC compared to SILAC and spectral counting in a proteomics screen. Proteomics, 2008, 8, 994-999.	1.3	211
172	Phosphatidylinositol 3-Kinase, Growth Disorders, and Cancer. New England Journal of Medicine, 2018, 379, 2052-2062.	13.9	211
173	Paxillin Serves as an ERK-Regulated Scaffold for Coordinating FAK and Rac Activation in Epithelial Morphogenesis. Molecular Cell, 2004, 16, 257-267.	4.5	210
174	PtdIns(5)P activates the host cell PI3-kinase/Akt pathway during Shigella flexneri infection. EMBO Journal, 2006, 25, 1024-1034.	3.5	208
175	Identification of small molecule inhibitors of pyruvate kinase M2. Biochemical Pharmacology, 2010, 79, 1118-1124.	2.0	208
176	Phosphoinositide 3-Kinase Regulates Phospholipase CÎ ³ -mediated Calcium Signaling. Journal of Biological Chemistry, 1998, 273, 23750-23757.	1.6	207
177	Phosphorylation of the Tumor Suppressor CYLD by the Breast Cancer Oncogene IKKÉ› Promotes Cell Transformation. Molecular Cell, 2009, 34, 461-472.	4.5	207
178	United at last: the tuberous sclerosis complex gene products connect the phosphoinositide 3-kinase/Akt pathway to mammalian target of rapamycin (mTOR) signalling. Biochemical Society Transactions, 2003, 31, 573-578.	1.6	204
179	Phosphoinositide 3-Kinase Inhibition Spares Actin Assembly in Activating Platelets but Reverses Platelet Aggregation. Journal of Biological Chemistry, 1995, 270, 11358-11366.	1.6	202
180	<i>PARK2</i> deletions occur frequently in sporadic colorectal cancer and accelerate adenoma development in <i>Apc</i> mutant mice. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 15145-15150.	3.3	202

#	Article	IF	CITATIONS
181	SH2 domain specificity and activity modified by a single residue. Nature, 1994, 369, 502-505.	13.7	199
182	Regulatory interactions in the recognition of endocytic sorting signals by AP-2 complexes. EMBO Journal, 1997, 16, 2240-2250.	3.5	198
183	Phenformin enhances the therapeutic benefit of BRAF ^{V600E} inhibition in melanoma. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 18226-18231.	3.3	197
184	Glutathione biosynthesis is a metabolic vulnerability in PI(3)K/Akt-driven breast cancer. Nature Cell Biology, 2016, 18, 572-578.	4.6	197
185	The Cbl Phosphotyrosine-binding Domain Selects a D(N/D)XpY Motif and Binds to the Tyr292Negative Regulatory Phosphorylation Site of ZAP-70. Journal of Biological Chemistry, 1997, 272, 33140-33144.	1.6	193
186	Phosphoinositide 3-kinase in immunological systems. Seminars in Immunology, 2002, 14, 7-18.	2.7	193
187	Olaparib and α-specific PI3K inhibitor alpelisib for patients with epithelial ovarian cancer: a dose-escalation and dose-expansion phase 1b trial. Lancet Oncology, The, 2019, 20, 570-580.	5.1	191
188	Class IA Phosphoinositide 3-Kinase Regulates Heart Size and Physiological Cardiac Hypertrophy. Molecular and Cellular Biology, 2005, 25, 9491-9502.	1.1	187
189	Substrate specificity and inhibitors of LRRK2, a protein kinase mutated in Parkinson's disease. Biochemical Journal, 2009, 424, 47-60.	1.7	186
190	Metabolic Regulation of Protein N-Alpha-Acetylation by Bcl-xL Promotes Cell Survival. Cell, 2011, 146, 607-620.	13.5	185
191	Double <i>PIK3CA</i> mutations in cis increase oncogenicity and sensitivity to PI3Kα inhibitors. Science, 2019, 366, 714-723.	6.0	185
192	Conditional Inhibition of the Mitogen-activated Protein Kinase Cascade by Wortmannin. Journal of Biological Chemistry, 1997, 272, 27665-27670.	1.6	184
193	A Bad kinase makes good. Nature, 1997, 390, 116-117.	13.7	183
194	Positive and Negative Roles of p85α and p85β Regulatory Subunits of Phosphoinositide 3-Kinase in Insulin Signaling. Journal of Biological Chemistry, 2003, 278, 48453-48466.	1.6	183
195	Metabolic Stress Controls mTORC1 Lysosomal Localization and Dimerization by Regulating the TTT-RUVBL1/2 Complex. Molecular Cell, 2013, 49, 172-185.	4.5	183
196	Reduced expression of the murine p85α subunit of phosphoinositide 3-kinase improves insulin signaling and ameliorates diabetes. Journal of Clinical Investigation, 2002, 109, 141-149.	3.9	183
197	The structural basis for substrate and inhibitor selectivity of the anthrax lethal factor. Nature Structural and Molecular Biology, 2004, 11, 60-66.	3.6	182
198	Characterization of the megakaryocyte demarcation membrane system and its role in thrombopoiesis. Blood, 2006, 107, 3868-3875.	0.6	182

#	ARTICLE	IF	CITATIONS
199	Use of RNA Interference-mediated Gene Silencing and Adenoviral Overexpression to Elucidate the Roles of AKT/Protein Kinase B Isoforms in Insulin Actions. Journal of Biological Chemistry, 2003, 278, 28312-28323.	1.6	181
200	The SH3 Domain-binding T Cell Tyrosyl Phosphoprotein p120. Journal of Biological Chemistry, 1995, 270, 19141-19150.	1.6	178
201	Metformin Decreases Glucose Oxidation and Increases the Dependency of Prostate Cancer Cells on Reductive Glutamine Metabolism. Cancer Research, 2013, 73, 4429-4438.	0.4	178
202	Src-homology 3 domain of protein kinase p59fyn mediates binding to phosphatidylinositol 3-kinase in T cells Proceedings of the National Academy of Sciences of the United States of America, 1993, 90, 7366-7370.	3.3	177
203	Receptor tyrosine kinases exert dominant control over PI3K signaling in human KRAS mutant colorectal cancers. Journal of Clinical Investigation, 2011, 121, 4311-4321.	3.9	177
204	Phosphorylation of TXNIP by AKT Mediates Acute Influx of Glucose in Response to Insulin. Cell Reports, 2017, 19, 2005-2013.	2.9	175
205	Depletion of a Putatively Druggable Class of Phosphatidylinositol Kinases Inhibits Growth of p53-Null Tumors. Cell, 2013, 155, 844-857.	13.5	173
206	PtdIns(4,5)P2 Functions at the Cleavage Furrow during Cytokinesis. Current Biology, 2005, 15, 1407-1412.	1.8	169
207	The Inositol 5′-Phosphatase SHIP Binds to Immunoreceptor Signaling Motifs and Responds to High Affinity IgE Receptor Aggregation. Journal of Biological Chemistry, 1996, 271, 29271-29278.	1.6	166
208	Identification of a novel pathway important for proliferation and differentiation of primary erythroid progenitors. Proceedings of the National Academy of Sciences of the United States of America, 1997, 94, 3016-3021.	3.3	166
209	The Phosphotyrosine Interaction Domain of SHC Recognizes Tyrosine-phosphorylated NPXY Motif. Journal of Biological Chemistry, 1995, 270, 14863-14866.	1.6	165
210	Novel PI 3-kinase-dependent mechanisms of trypanosome invasion and vacuole maturation. Journal of Cell Science, 2003, 116, 3611-3622.	1.2	165
211	Characterization of a Rac1- and RhoGDI-Associated Lipid Kinase Signaling Complex. Molecular and Cellular Biology, 1998, 18, 762-770.	1.1	164
212	SYK Is Upstream of Phosphoinositide 3-Kinase in B Cell Receptor Signaling. Journal of Biological Chemistry, 1999, 274, 32662-32666.	1.6	164
213	Subcellular Locations of Phosphatidylinositol 4-Kinase Isoforms. Journal of Biological Chemistry, 1997, 272, 13236-13241.	1.6	163
214	Activation of P2Y2 Receptors by UTP and ATP Stimulates Mitogen-activated Kinase Activity through a Pathway That Involves Related Adhesion Focal Tyrosine Kinase and Protein Kinase C. Journal of Biological Chemistry, 1998, 273, 2653-2660.	1.6	163
215	Utilization of Oriented Peptide Libraries to Identify Substrate Motifs Selected by ATM. Journal of Biological Chemistry, 2000, 275, 22719-22727.	1.6	163
216	Coordinated Regulation of Toll-Like Receptor and NOD2 Signaling by K63-Linked Polyubiquitin Chains. Molecular and Cellular Biology, 2007, 27, 6012-6025.	1.1	163

#	Article	IF	CITATIONS
217	p120 Is a Major Substrate of Tyrosine Phosphorylation upon B Cell Antigen Receptor Stimulation and Interacts in Vivo with Fyn and Syk Tyrosine Kinases, Grb2 and Shc Adaptors, and the p85 Subunit of Phosphatidylinositol 3-Kinase. Journal of Biological Chemistry, 1996, 271, 3187-3194.	1.6	161
218	Phosphoinositide 3-Kinase Catalytic Subunit Deletion and Regulatory Subunit Deletion Have Opposite Effects on Insulin Sensitivity in Mice. Molecular and Cellular Biology, 2005, 25, 1596-1607.	1.1	161
219	Structural Aspects of the Red Cell Anion Exchange Protein. Annual Review of Biochemistry, 1986, 55, 511-538.	5.0	159
220	Stand Up to Cancer Phase Ib Study of Pan-Phosphoinositide-3-Kinase Inhibitor Buparlisib With Letrozole in Estrogen Receptor-Positive/Human Epidermal Growth Factor Receptor 2-Negative Metastatic Breast Cancer. Journal of Clinical Oncology, 2014, 32, 1202-1209.	0.8	159
221	Post-transcriptional Regulation of De Novo Lipogenesis by mTORC1-S6K1-SRPK2 Signaling. Cell, 2017, 171, 1545-1558.e18.	13.5	159
222	lκB Kinase β Phosphorylates the K63 Deubiquitinase A20 To Cause Feedback Inhibition of the NF-κB Pathway. Molecular and Cellular Biology, 2007, 27, 7451-7461.	1.1	158
223	Analysis of an Activator:Coactivator Complex Reveals an Essential Role for Secondary Structure in Transcriptional Activation. Molecular Cell, 1998, 2, 353-359.	4.5	155
224	A Multi-enzyme Cascade of Hemoglobin Proteolysis in the Intestine of Blood-feeding Hookworms. Journal of Biological Chemistry, 2004, 279, 35950-35957.	1.6	155
225	Insulin–PI3K signalling: an evolutionarily insulated metabolic driver of cancer. Nature Reviews Endocrinology, 2020, 16, 276-283.	4.3	155
226	Hem-1 Complexes Are Essential for Rac Activation, Actin Polymerization, and Myosin Regulation during Neutrophil Chemotaxis. PLoS Biology, 2006, 4, e38.	2.6	154
227	Ubiquitination of K-Ras Enhances Activation and Facilitates Binding to Select Downstream Effectors. Science Signaling, 2011, 4, ra13.	1.6	152
228	Regulation of GRP1-catalyzed ADP Ribosylation Factor Guanine Nucleotide Exchange by Phosphatidylinositol 3,4,5-Trisphosphate. Journal of Biological Chemistry, 1998, 273, 1859-1862.	1.6	150
229	Cloning and Characterization of a Wortmannin-sensitive Human Phosphatidylinositol 4-Kinase. Journal of Biological Chemistry, 1997, 272, 4384-4390.	1.6	149
230	The phosphatidylinositol (PI)-5-phosphate 4-kinase type II enzyme controls insulin signaling by regulating PI-3,4,5-trisphosphate degradation. Proceedings of the National Academy of Sciences of the United States of America, 2003, 100, 9867-9872.	3.3	149
231	Phosphoinositide 3-kinase regulatory subunit p85Â suppresses insulin action via positive regulation of PTEN. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103, 12093-12097.	3.3	149
232	Small Molecule Activation of PKM2 in Cancer Cells Induces Serine Auxotrophy. Chemistry and Biology, 2012, 19, 1187-1198.	6.2	149
233	Fatty acid synthesis is required for breast cancer brain metastasis. Nature Cancer, 2021, 2, 414-428.	5.7	147
234	The p85 regulatory subunit of phosphoinositide 3-kinase down-regulates IRS-1 signaling via the formation of a sequestration complex. Journal of Cell Biology, 2005, 170, 455-464.	2.3	146

#	Article	IF	CITATIONS
235	A Cross-Species Analysis in Pancreatic Neuroendocrine Tumors Reveals Molecular Subtypes with Distinctive Clinical, Metastatic, Developmental, and Metabolic Characteristics. Cancer Discovery, 2015, 5, 1296-1313.	7.7	145
236	Limited Environmental Serine and Glycine Confer Brain Metastasis Sensitivity to PHGDH Inhibition. Cancer Discovery, 2020, 10, 1352-1373.	7.7	145
237	Altered metabolism in cancer. BMC Biology, 2010, 8, 88.	1.7	144
238	Metabolic Reprogramming by the PI3K-Akt-mTOR Pathway in Cancer. Recent Results in Cancer Research, 2016, 207, 39-72.	1.8	143
239	Identification and quantification of polyphosphoinositides produced in response to platelet-derived growth factor stimulation. Methods in Enzymology, 1991, 198, 78-87.	0.4	142
240	The carbohydrate-insulin model: a physiological perspective on the obesity pandemic. American Journal of Clinical Nutrition, 2021, 114, 1873-1885.	2.2	141
241	Increased Insulin Sensitivity and Reduced Adiposity in Phosphatidylinositol 5-Phosphate 4-Kinase β â^'/â^' Mice. Molecular and Cellular Biology, 2004, 24, 5080-5087.	1.1	140
242	The Phosphoinositide 3-Kinase Regulatory Subunit p85α Can Exert Tumor Suppressor Properties through Negative Regulation of Growth Factor Signaling. Cancer Research, 2010, 70, 5305-5315.	0.4	140
243	A co-clinical approach identifies mechanisms and potential therapies for androgen deprivation resistance in prostate cancer. Nature Genetics, 2013, 45, 747-755.	9.4	138
244	Bovine brain contains two types of phosphatidylinositol kinase. Biochemistry, 1987, 26, 6845-6852.	1.2	137
245	Identification of small molecule inhibitors of anthrax lethal factor. Nature Structural and Molecular Biology, 2004, 11, 67-72.	3.6	136
246	Characterization of nucleotide binding sites on chloroplast coupling factor 1. Biochemistry, 1975, 14, 2968-2975.	1.2	135
247	Evaluation of Substituted <i>N</i> , <i>N</i> ′-Diarylsulfonamides as Activators of the Tumor Cell Specific M2 Isoform of Pyruvate Kinase. Journal of Medicinal Chemistry, 2010, 53, 1048-1055.	2.9	135
248	Overview of the Alliance for Cellular Signaling. Nature, 2002, 420, 703-706.	13.7	134
249	Inhibition of lung cancer growth: ATP citrate lyase knockdown and statin treatment leads to dual blockade of mitogenâ€activated protein Kinase (MAPK) and Phosphatidylinositolâ€3â€kinase (PI3K)/AKT pathways. Journal of Cellular Physiology, 2012, 227, 1709-1720.	2.0	133
250	Gain of Glucose-Independent Growth upon Metastasis of Breast Cancer Cells to the Brain. Cancer Research, 2015, 75, 554-565.	0.4	133
251	Dietary fructose improves intestinal cell survival and nutrient absorption. Nature, 2021, 597, 263-267.	13.7	133
252	Location of the stilbenedisulfonate binding site of the human erythrocyte anion-exchange system by resonance energy transfer. Biochemistry, 1979, 18, 4505-4516.	1.2	132

#	Article	IF	CITATIONS
253	Heregulin Stimulates Mitogenesis and Phosphatidylinositol 3-Kinase in Mouse Fibroblasts Transfected with erbB2/neu and erbB3. Journal of Biological Chemistry, 1995, 270, 7111-7116.	1.6	131
254	What a Tangled Web We Weave: Emerging Resistance Mechanisms to Inhibition of the Phosphoinositide 3-Kinase Pathway. Cancer Discovery, 2013, 3, 1345-1354.	7.7	131
255	A Fluorescent Reporter of AMPK Activity and Cellular Energy Stress. Cell Metabolism, 2011, 13, 476-486.	7.2	130
256	FoxO3 coordinates metabolic pathways to maintain redox balance in neural stem cells. EMBO Journal, 2013, 32, 2589-2602.	3.5	130
257	p120 Is a Cytosolic Adapter Protein That Associates with Phosphoinositide 3-Kinase in Response to Epidermal Growth Factor in PC12 and Other Cells. Journal of Biological Chemistry, 1996, 271, 563-567.	1.6	128
258	Phosphoinositide Binding Domains. Cell, 1999, 97, 817-820.	13.5	128
259	AMP-Activated Protein Kinase Regulates Neuronal Polarization by Interfering with PI 3-Kinase Localization. Science, 2011, 332, 247-251.	6.0	127
260	Metabolic and Functional Genomic Studies Identify Deoxythymidylate Kinase as a Target in <i>LKB1</i> -Mutant Lung Cancer. Cancer Discovery, 2013, 3, 870-879.	7.7	127
261	The Lipid Products of Phosphoinositide 3-Kinase Increase Cell Motility through Protein Kinase C. Journal of Biological Chemistry, 1997, 272, 6465-6470.	1.6	126
262	Reduced expression of the murine p85α subunit of phosphoinositide 3-kinase improves insulin signaling and ameliorates diabetes. Journal of Clinical Investigation, 2002, 109, 141-149.	3.9	124
263	Increased P85α Is a Potent Negative Regulator of Skeletal Muscle Insulin Signaling and Induces in Vivo Insulin Resistance Associated with Growth Hormone Excess. Journal of Biological Chemistry, 2005, 280, 37489-37494.	1.6	123
264	Type I Phosphatidylinositol-4-phosphate 5-Kinases Synthesize the Novel Lipids Phosphatidylinositol 3,5-Bisphosphate and Phosphatidylinositol 5-Phosphate. Journal of Biological Chemistry, 1998, 273, 18040-18046.	1.6	122
265	Role of Phosphoinositide 3-Kinase Regulatory Isoforms in Development and Actin Rearrangement. Molecular and Cellular Biology, 2005, 25, 2593-2606.	1.1	120
266	Cancer's Fuel Choice: New Flavors for a Picky Eater. Molecular Cell, 2015, 60, 514-523.	4.5	120
267	Structural Organization and Alternative Splicing of the Murine Phosphoinositide 3-Kinase p85α Gene. Genomics, 1996, 37, 113-121.	1.3	118
268	The APL Paradigm and the "Co-Clinical Trial―Project. Cancer Discovery, 2011, 1, 108-116.	7.7	118
269	Phosphorylation of BRAF by AMPK Impairs BRAF-KSR1 Association and Cell Proliferation. Molecular Cell, 2013, 52, 161-172.	4.5	118
270	Binding Specificity and Regulation of the Serine Protease and PDZ Domains of HtrA2/Omi. Journal of Biological Chemistry, 2003, 278, 49417-49427.	1.6	116

#	Article	IF	CITATIONS
271	Age-induced accumulation of methylmalonic acid promotes tumour progression. Nature, 2020, 585, 283-287.	13.7	115
272	Phosphatidylinositol 4,5-Bisphosphate Synthesis Is Required for Activation of Phospholipase D in U937 Cells. Journal of Biological Chemistry, 1995, 270, 5130-5135.	1.6	114
273	<i>PHGDH</i> amplification and altered glucose metabolism in human melanoma. Pigment Cell and Melanoma Research, 2011, 24, 1112-1115.	1.5	114
274	D3 Phosphoinositides and Outside-in integrin Signaling by Glycoprotein IIb-IIIa Mediate Platelet Actin Assembly and Filopodial Extension Induced by Phorbol 12-Myristate 13-Acetate. Journal of Biological Chemistry, 1996, 271, 32986-32993.	1.6	113
275	Growth Factor-specific Signaling Pathway Stimulation and Gene Expression Mediated by ErbB Receptors. Journal of Biological Chemistry, 2001, 276, 22685-22698.	1.6	113
276	Evaluation of thieno[3,2-b]pyrrole[3,2-d]pyridazinones as activators of the tumor cell specific M2 isoform of pyruvate kinase. Bioorganic and Medicinal Chemistry Letters, 2010, 20, 3387-3393.	1.0	112
277	Fetal Deficiency of Lin28 Programs Life-Long Aberrations in Growth and Glucose Metabolism. Stem Cells, 2013, 31, 1563-1573.	1.4	112
278	Cabozantinib Eradicates Advanced Murine Prostate Cancer by Activating Antitumor Innate Immunity. Cancer Discovery, 2017, 7, 750-765.	7.7	112
279	Interferon regulatory factor-3 is an in vivo target of DNA-PK. Proceedings of the National Academy of Sciences of the United States of America, 2002, 99, 2818-2823.	3.3	111
280	Toward a better understanding of folate metabolism in health and disease. Journal of Experimental Medicine, 2019, 216, 253-266.	4.2	109
281	Norepinephrine complexes and reduced vanadium(V) to reverse vanadate inhibition of the (sodium,) Tj ETQq1 1	0.784314 6.6	rgBT /Over o
282	Ligand Discrimination in Signaling through an ErbB4 Receptor Homodimer. Journal of Biological Chemistry, 2000, 275, 19803-19807.	1.6	104
283	Targeting glutamine metabolism sensitizes pancreatic cancer to PARP-driven metabolic catastrophe induced by ß-lapachone. Cancer & Metabolism, 2015, 3, 12.	2.4	104
284	Marked Differences between Metalloproteases Meprin A and B in Substrate and Peptide Bond Specificity. Journal of Biological Chemistry, 2001, 276, 13248-13255.	1.6	103
285	Deletion of the phosphoinositide 3-kinase p110Â gene attenuates murine atherosclerosis. Proceedings of the United States of America, 2007, 104, 8077-8082.	3.3	103
286	PARK2 Depletion Connects Energy and Oxidative Stress to PI3K/Akt Activation via PTEN S-Nitrosylation. Molecular Cell, 2017, 65, 999-1013.e7.	4.5	103
287	Phosphatidylinositol 3-kinase-dependent activation of trypsinogen modulates the severity of acute pancreatitis. Journal of Clinical Investigation, 2001, 108, 1387-1395.	3.9	102
288	Amiloride inhibits murine erythroleukemia cell differentiation: evidence for a Ca2+ requirement for commitment Proceedings of the National Academy of Sciences of the United States of America, 1980, 77, 5948-5952.	3.3	101

#	Article	IF	CITATIONS
289	Location of sites in human lipocortin I that are phosphorylated by protein tyrosine kinases and protein kinases A and C. Biochemistry, 1988, 27, 3682-3690.	1.2	101
290	Phosphoinositide 3-Kinase Binds Constitutively to α/β-Tubulin and Binds to γ-Tubulin in Response to Insulin. Journal of Biological Chemistry, 1995, 270, 25985-25991.	1.6	101
291	Class IA Phosphatidylinositol 3-Kinase in Pancreatic Î ² Cells Controls Insulin Secretion by Multiple Mechanisms. Cell Metabolism, 2010, 12, 619-632.	7.2	101
292	Crystal structure of the breakpoint cluster region-homology domain from phosphoinositide 3-kinase p85Â subunit. Proceedings of the National Academy of Sciences of the United States of America, 1996, 93, 14373-14378.	3.3	99
293	A mammalian adaptor protein with conserved Src homology 2 and phosphotyrosine-binding domains is related to Shc and is specifically expressed in the brain Proceedings of the National Academy of Sciences of the United States of America, 1996, 93, 2729-2734.	3.3	97
294	Loss of class IA PI3K signaling in muscle leads to impaired muscle growth, insulin response, and hyperlipidemia. Cell Metabolism, 2006, 3, 355-366.	7.2	96
295	Class 1A PI3K regulates vessel integrity during development and tumorigenesis. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105, 9739-9744.	3.3	96
296	PTEN Regulates Glutamine Flux to Pyrimidine Synthesis and Sensitivity to Dihydroorotate Dehydrogenase Inhibition. Cancer Discovery, 2017, 7, 380-390.	7.7	94
297	Phosphatidylinositol-3 kinase activation induced upon Fc gamma RIIIA-ligand interaction Journal of Experimental Medicine, 1994, 179, 551-558.	4.2	93
298	Then Negative Regulation of Phosphoinositide 3-Kinase Signaling by p85 and Its Implication in Cancer. Cell Cycle, 2005, 4, 1309-1312.	1.3	92
299	Investigation of quercetin binding sites on chloroplast coupling factor. Biochemistry, 1976, 15, 1-8.	1.2	91
300	Association of Protein Kinase Cμ with Type II Phosphatidylinositol 4-Kinase and Type I Phosphatidylinositol-4-phosphate 5-Kinase. Journal of Biological Chemistry, 1998, 273, 23126-23133.	1.6	91
301	Designed Inhibitors of Insulin-Degrading Enzyme Regulate the Catabolism and Activity of Insulin. PLoS ONE, 2010, 5, e10504.	1.1	91
302	Cell-to-Cell Variability in PI3K Protein Level Regulates PI3K-AKT Pathway Activity in Cell Populations. Current Biology, 2011, 21, 173-183.	1.8	91
303	Characterization of <i>KRAS</i> Rearrangements in Metastatic Prostate Cancer. Cancer Discovery, 2011, 1, 35-43.	7.7	91
304	Pathological Role of Serum- and Glucocorticoid-Regulated Kinase 1 in Adverse Ventricular Remodeling. Circulation, 2012, 126, 2208-2219.	1.6	91
305	Specificity of LIM Domain Interactions with Receptor Tyrosine Kinases. Journal of Biological Chemistry, 1996, 271, 15934-15941.	1.6	90
306	Reaction of (sodium(1+)-potassium(1+) ion)-activated ATPase with 7-chloro-4-nitrobenzo-2-oxa-1,3-diazole: evidence for an essential tyrosine at the active site. Biochemistry, 1978, 17, 418-425.	1.2	89

#	Article	IF	CITATIONS
307	Metabolomics of Human Cerebrospinal Fluid Identifies Signatures of Malignant Glioma. Molecular and Cellular Proteomics, 2012, 11, M111.014688.	2.5	89
308	Fenofibrate prevents skeletal muscle loss in mice with lung cancer. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, E743-E752.	3.3	89
309	Calcium regulates the commitment of murine erythroleukemia cells to terminal erythroid differentiation Journal of Cell Biology, 1981, 90, 542-544.	2.3	88
310	Discovery of catalytically active orthologues of the Parkinson's disease kinase PINK1: analysis of substrate specificity and impact of mutations. Open Biology, 2011, 1, 110012.	1.5	88
311	Vulnerabilities of <i>PTEN</i> – <i>TP53</i> -Deficient Prostate Cancers to Compound PARP–PI3K Inhibition. Cancer Discovery, 2014, 4, 896-904.	7.7	88
312	Idelalisib — A PI3Kδ Inhibitor for B-Cell Cancers. New England Journal of Medicine, 2014, 370, 1061-1062.	13.9	86
313	Hitting the Target: Emerging Technologies in the Search for Kinase Substrates. Science Signaling, 2002, 2002, pe49-pe49.	1.6	85
314	Diverting Glycolysis to Combat Oxidative Stress. , 2015, , 3-23.		85
315	Fluorescence energy transfer between ligand binding sites on chloroplast coupling factor 1. Biochemistry, 1975, 14, 2976-2981.	1.2	84
316	Mitochondrial One-Carbon Pathway Supports Cytosolic Folate Integrity in Cancer Cells. Cell, 2018, 175, 1546-1560.e17.	13.5	84
317	Production of novel polyphosphoinositides in vivo is linked to cell transformation by polyomavirus middle T antigen. Journal of Virology, 1990, 64, 4718-4725.	1.5	84
318	Effects of muscarinic, alpha-adrenergic, and substance P agonists and ionomycin on ion transport mechanisms in the rat parotid acinar cell. The dependence of ion transport on intracellular calcium Journal of General Physiology, 1989, 93, 285-319.	0.9	83
319	Phosphatidyl Inositol 3-Kinase Signaling in Hypothalamic Proopiomelanocortin Neurons Contributes to the Regulation of Glucose Homeostasis. Endocrinology, 2009, 150, 4874-4882.	1.4	82
320	Exon-centric regulation of pyruvate kinase M alternative splicing via mutually exclusive exons. Journal of Molecular Cell Biology, 2012, 4, 79-87.	1.5	81
321	Effects of extracellular ATP on ion transport systems and [Ca2+]i in rat parotid acinar cells. Comparison with the muscarinic agonist carbachol Journal of General Physiology, 1990, 95, 319-346.	0.9	80
322	Site-specific monoubiquitination activates Ras by impeding GTPase-activating protein function. Nature Structural and Molecular Biology, 2013, 20, 46-52.	3.6	80
323	Interactions between transport inhibitors at the anion binding sites of the band 3 dimer. Biochemistry, 1981, 20, 5095-5105.	1.2	79
324	Role of mitochondrial membrane potential in the regulation of murine erythroleukemia cell differentiation. Cell, 1982, 28, 855-863.	13.5	79

#	Article	IF	CITATIONS
325	A novel phosphatidylinositol(3,4,5)P3 pathway in fission yeast. Journal of Cell Biology, 2004, 166, 205-211.	2.3	79
326	Extracellular HIV-1 Tat protein activates phosphatidylinositol 3- and Akt/PKB kinases in CD4+ T lymphoblastoid Jurkat cells. European Journal of Immunology, 1997, 27, 2805-2811.	1.6	78
327	Pathways for phosphoinositide synthesis. Chemistry and Physics of Lipids, 1999, 98, 69-77.	1.5	78
328	Acetate Fuels the Cancer Engine. Cell, 2014, 159, 1492-1494.	13.5	78
329	BRD7, a Tumor Suppressor, Interacts with p85α and Regulates PI3K Activity. Molecular Cell, 2014, 54, 193-202.	4.5	78
330	Grabbing phosphoproteins. Nature, 1999, 402, 30-31.	13.7	77
331	The Role of the ErbB Family Members in Non–Small Cell Lung Cancers Sensitive to Epidermal Growth Factor Receptor Kinase Inhibitors: Fig. 1 Clinical Cancer Research, 2006, 12, 4372s-4376s.	3.2	77
332	Increasing the intracellular Na+ concentration induces differentiation in a pre-B lymphocyte cell line Proceedings of the National Academy of Sciences of the United States of America, 1983, 80, 7547-7550.	3.3	76
333	Phosphoinositide metabolism and the control of cell proliferation. Biochimica Et Biophysica Acta: Reviews on Cancer, 1989, 948, 327-344.	3.3	76
334	T Cell Activation-dependent Association between the p85 Subunit of the Phosphatidylinositol 3-Kinase and Grb2/Phospholipase C-l̂31-binding Phosphotyrosyl Protein pp36/38. Journal of Biological Chemistry, 1995, 270, 20177-20182.	1.6	76
335	Differential Signaling by the Epidermal Growth Factor-like Growth Factors Neuregulin-1 and Neuregulin-2. Journal of Biological Chemistry, 1998, 273, 26954-26961.	1.6	76
336	Phosphoinositide 3-kinase inhibitors induce DNA damage through nucleoside depletion. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, E4338-47.	3.3	76
337	Radiotherapy as a tool to elicit clinically actionable signalling pathways in cancer. Nature Reviews Clinical Oncology, 2022, 19, 114-131.	12.5	76
338	Impaired Kit- but Not FcÎμRI-initiated Mast Cell Activation in the Absence of Phosphoinositide 3-Kinase p85α Gene Products. Journal of Biological Chemistry, 2000, 275, 6022-6029.	1.6	75
339	Adaptive changes in amino acid metabolism permit normal longevity in mice consuming a low-carbohydrate ketogenic diet. Biochimica Et Biophysica Acta - Molecular Basis of Disease, 2015, 1852, 2056-2065.	1.8	75
340	PI3K-p110α mediates the oncogenic activity induced by loss of the novel tumor suppressor PI3K-p85α. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, 7095-7100.	3.3	75
341	Regulation of the Lck SH2 Domain by Tyrosine Phosphorylation. Journal of Biological Chemistry, 1996, 271, 24880-24884.	1.6	74
342	The p85α Regulatory Subunit of Phosphoinositide 3-Kinase Potentiates c-Jun N-Terminal Kinase-Mediated Insulin Resistance. Molecular and Cellular Biology, 2007, 27, 2830-2840.	1.1	74

#	Article	IF	CITATIONS
343	Prognostic significance of AMP-activated protein kinase expression and modifying effect of MAPK3/1 in colorectal cancer. British Journal of Cancer, 2010, 103, 1025-1033.	2.9	73
344	Activation of beef heart mitochondrial adenosine triphosphatase by 2,4-dinitrophenol. Biochemistry, 1973, 12, 4900-4904.	1.2	72
345	A Single Point Mutation Switches the Specificity of Group III Src Homology (SH) 2 Domains to That of Group I SH2 Domains. Journal of Biological Chemistry, 1995, 270, 26029-26032.	1.6	72
346	Phosphorylation of the Platelet p47 Phosphoprotein Is Mediated by the Lipid Products of Phosphoinositide 3-Kinase. Journal of Biological Chemistry, 1995, 270, 29525-29531.	1.6	70
347	Loss of the Par-1b/MARK2 polarity kinase leads to increased metabolic rate, decreased adiposity, and insulin hypersensitivity in vivo. Proceedings of the National Academy of Sciences of the United States of America, 2007, 104, 5680-5685.	3.3	70
348	Evolution of Ime2 Phosphorylation Sites on Cdk1 Substrates Provides a Mechanism to Limit the Effects of the Phosphatase Cdc14 in Meiosis. Molecular Cell, 2007, 25, 689-702.	4.5	70
349	Pancreatic cancers rely on a novel glutamine metabolism pathway to maintain redox balance. Cell Cycle, 2013, 12, 1987-1988.	1.3	70
350	Non-oncogene Addiction to SIRT3 Plays a Critical Role in Lymphomagenesis. Cancer Cell, 2019, 35, 916-931.e9.	7.7	70
351	High-affinity binding of the Drosophila Numb phosphotyrosine-binding domain to peptides containing a Gly-Pro-(p)Tyr motif. Proceedings of the National Academy of Sciences of the United States of America, 1997, 94, 7204-7209.	3.3	69
352	Dynamic Incorporation of Histone H3 Variants into Chromatin Is Essential for Acquisition of Aggressive Traits and Metastatic Colonization. Cancer Cell, 2019, 36, 402-417.e13.	7.7	69
353	Sjogren's syndrome-like disease in mice with T cells lacking class 1A phosphoinositide-3-kinase. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103, 16882-16887.	3.3	68
354	Inhibition of PI3K binding to activators by serine phosphorylation of PI3K regulatory subunit p85α Src homology-2 domains. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 14157-14162.	3.3	68
355	Phosphatidylinositol-5-Phosphate 4-Kinases Regulate Cellular Lipid Metabolism By Facilitating Autophagy. Molecular Cell, 2018, 70, 531-544.e9.	4.5	68
356	Determining protein kinase substrate specificity by parallel solution-phase assay of large numbers of peptide substrates. Nature Protocols, 2006, 1, 375-379.	5.5	66
357	Mitotic MELK-eIF4B signaling controls protein synthesis and tumor cell survival. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, 9810-9815.	3.3	66
358	Extracellular Human Immunodeficiency Virus Type-1 Tat Protein Activates Phosphatidylinositol 3-Kinase in PC12 Neuronal Cells. Journal of Biological Chemistry, 1996, 271, 22961-22964.	1.6	65
359	A Chemoproteomic Strategy for Direct and Proteome-Wide Covalent Inhibitor Target-Site Identification. Journal of the American Chemical Society, 2019, 141, 191-203.	6.6	65
360	p85α SH2 Domain Phosphorylation by IKK Promotes Feedback Inhibition of PI3K and Akt in Response to Cellular Starvation. Molecular Cell, 2012, 45, 719-730.	4.5	63

#	Article	IF	CITATIONS
361	Differential regulation of the phosphoinositide 3-kinase and MAP kinase pathways by hepatocyte growth factor vs. insulin-like growth factor-I in myogenic cells. Experimental Cell Research, 2004, 297, 224-234.	1.2	62
362	Identifying and Targeting Sporadic Oncogenic Genetic Aberrations in Mouse Models of Triple-Negative Breast Cancer. Cancer Discovery, 2018, 8, 354-369.	7.7	62
363	Specificity in recognition of phosphopeptides by src-homology 2 domains. Journal of Cell Science, 1994, 1994, 121-126.	1.2	61
364	Phase 2 study of buparlisib (BKM120), a pan-class I PI3K inhibitor, in patients with metastatic triple-negative breast cancer. Breast Cancer Research, 2020, 22, 120.	2.2	60
365	Two distinct cytosolic calcium responses to extracellular ATP in rat parotid acinar cells. British Journal of Pharmacology, 1993, 108, 453-461.	2.7	59
366	Stimulation through the T cell receptor leads to interactions between SHB and several signaling proteins. Oncogene, 1998, 16, 891-901.	2.6	59
367	DNA Damage-induced Association of ATM with Its Target Proteins Requires a Protein Interaction Domain in the N Terminus of ATM. Journal of Biological Chemistry, 2005, 280, 15158-15164.	1.6	59
368	1,25(OH)2D3 increases calcium and phosphatidylinositol metabolism in differentiating cultured human keratinocytes. Journal of Nutritional Biochemistry, 1990, 1, 81-87.	1.9	57
369	A constitutively activated form of the p110β isoform of PI3-kinase induces prostatic intraepithelial neoplasia in mice. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 11002-11007.	3.3	57
370	Identification of CDCP1 as a hypoxia-inducible factor 2α (HIF-2α) target gene that is associated with survival in clear cell renal cell carcinoma patients. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 3483-3488.	3.3	57
371	A Genetic Mouse Model of Invasive Endometrial Cancer Driven by Concurrent Loss of Pten and Lkb1 Is Highly Responsive to mTOR Inhibition. Cancer Research, 2014, 74, 15-23.	0.4	57
372	AKT1 Overexpression in Endothelial Cells Leads to the Development of Cutaneous Vascular Malformations In Vivo. Archives of Dermatology, 2007, 143, 504-6.	1.7	56
373	Breathless cancer cells get fat on glutamine. Cell Research, 2012, 22, 443-446.	5.7	56
374	Phosphoinositides and membrane curvature switch the mode of actin polymerization via selective recruitment of toca-1 and Snx9. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 7193-7198.	3.3	56
375	BRD7 Regulates XBP1s' Activity and Glucose Homeostasis through Its Interaction with the Regulatory Subunits of PI3K. Cell Metabolism, 2014, 20, 73-84.	7.2	56
376	At a crossroads: how to translate the roles of PI3K in oncogenic and metabolic signalling into improvements in cancer therapy. Nature Reviews Clinical Oncology, 2022, 19, 471-485.	12.5	56
377	Mechanism of anion exchange across the red cell membrane by band 3: interactions between stilbenedisulfonate and NAP-taurine binding sites. Biochemistry, 1981, 20, 5695-5701.	1.2	55
378	Chemoprevention Meets Glucose Control. Cancer Prevention Research, 2010, 3, 1049-1052.	0.7	55

#	Article	IF	CITATIONS
379	TTBK2 kinase substrate specificity and the impact of spinocerebellar-ataxia-causing mutations on expression, activity, localization and development. Biochemical Journal, 2011, 437, 157-167.	1.7	55
380	Peptide Substrate Specificities and Protein Cleavage Sites of Human Endometase/Matrilysin-2/Matrix Metalloproteinase-26. Journal of Biological Chemistry, 2002, 277, 35168-35175.	1.6	54
381	T-cell function is partially maintained in the absence of class IA phosphoinositide 3-kinase signaling. Blood, 2007, 109, 2894-2902.	0.6	54
382	Organâ€specific lymphangiectasia, arrested lymphatic sprouting, and maturation defects resulting from geneâ€targeting of the PI3K regulatory isoforms p85α, p55α, and p50α. Developmental Dynamics, 2009, 238, 2670-2679.	0.8	54
383	The SH2 Domain-containing Inositol 5′-Phosphatase (SHIP) Recruits the p85 Subunit of Phosphoinositide 3-Kinase during FcγRIIb1-mediated Inhibition of B Cell Receptor Signaling. Journal of Biological Chemistry, 1999, 274, 7489-7494.	1.6	53
384	Minimal activators that bind to the KIX domain of p300/CBP identified by phage display screening. Nature Biotechnology, 2000, 18, 1080-1085.	9.4	53
385	Molecular Phylogenetics of Mastodon and <i>Tyrannosaurus rex</i> . Science, 2008, 320, 499-499.	6.0	53
386	Developing dietary interventions as therapy for cancer. Nature Reviews Cancer, 2022, 22, 452-466.	12.8	52
387	Peptide libraries: at the crossroads of proteomics and bioinformatics. Current Opinion in Chemical Biology, 2003, 7, 84-90.	2.8	51
388	2-Oxo-N-aryl-1,2,3,4-tetrahydroquinoline-6-sulfonamides as activators of the tumor cell specific M2 isoform of pyruvate kinase. Bioorganic and Medicinal Chemistry Letters, 2011, 21, 6322-6327.	1.0	51
389	F stands for fructose and fat. Nature, 2013, 502, 181-182.	13.7	51
390	A slow interconversion between active and inactive states of the (sodium + potassium ion)-dependent ATPase. Biochemistry, 1976, 15, 5280-5287.	1.2	50
391	α-Ketothioamide Derivatives: A Promising Tool to Interrogate Phosphoglycerate Dehydrogenase (PHGDH). Journal of Medicinal Chemistry, 2017, 60, 1591-1597.	2.9	50
392	Mutations in the Juxtamembrane Region of the Insulin Receptor Impair Activation of Phosphatidylinositol 3-Kinase by Insulin. Molecular Endocrinology, 1991, 5, 769-777.	3.7	49
393	Somatic Mutations of PIK3R1 Promote Gliomagenesis. PLoS ONE, 2012, 7, e49466.	1.1	49
394	Deletion of the gene <i>Pip4k2c</i> , a novel phosphatidylinositol kinase, results in hyperactivation of the immune system. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, 7596-7601.	3.3	48
395	Death-associated protein kinase 1 phosphorylates NDRG2 and induces neuronal cell death. Cell Death and Differentiation, 2017, 24, 238-250.	5.0	48
396	Blockade of ATP binding site of P2 purinoceptors in rat parotid acinar cells by isothiocyanate compounds. Biochemical Pharmacology, 1993, 45, 1936-1940.	2.0	47

#	Article	IF	CITATIONS
397	PTEN loss is a contextâ€dependent outcome determinant in obese and nonâ€obese endometrioid endometrial cancer patients. Molecular Oncology, 2015, 9, 1694-1703.	2.1	47
398	Selective inhibition of CDK7 reveals high-confidence targets and new models for TFIIH function in transcription. Genes and Development, 2020, 34, 1452-1473.	2.7	47
399	Ion transport systems sequenced. Trends in Neurosciences, 1986, 9, 1-3.	4.2	46
400	Elevation of [Ca2+]iand the Activation of Ion Channels and Fluxes by Extracellular ATP and Phospholipase C-Linked Agonists in Rat Parotid Acinar Cells. Annals of the New York Academy of Sciences, 1990, 603, 76-90.	1.8	46
401	Protein Tyrosine Phosphatase 1B Regulates Pyruvate Kinase M2 Tyrosine Phosphorylation. Journal of Biological Chemistry, 2013, 288, 17360-17371.	1.6	46
402	Interpreting Sequences from Mastodon and <i>T. rex</i> . Science, 2007, 317, 1324-1325.	6.0	45
403	Rac-Mediated Macropinocytosis of Extracellular Protein Promotes Glucose Independence in Non-Small Cell Lung Cancer. Cancers, 2019, 11, 37.	1.7	45
404	Human erythrocyte anion exchange site characterised using a fluorescent probe. Nature, 1979, 282, 520-522.	13.7	44
405	Cancer's insatiable appetite. Nature Biotechnology, 2009, 27, 916-917.	9.4	44
406	Characterization of sulfhydryl groups on chloroplast coupling factor 1 exposed by heat activation. Biochemistry, 1976, 15, 9-14.	1.2	43
407	Modulation of epithelial neoplasia and lymphoid hyperplasia in PTEN+/- mice by the p85 regulatory subunits of phosphoinositide 3-kinase. Proceedings of the National Academy of Sciences of the United States of America, 2005, 102, 10238-10243.	3.3	43
408	Extracellular ATP elevates intracellular free calcium in rat parotid acinar cells. Biochemical and Biophysical Research Communications, 1987, 149, 523-530.	1.0	42
409	PI3K Charges Ahead. Science, 2007, 317, 206-207.	6.0	42
410	A Homogeneous, High-Throughput Assay for Phosphatidylinositol 5-Phosphate 4-Kinase with a Novel, Rapid Substrate Preparation. PLoS ONE, 2013, 8, e54127.	1.1	42
411	Proteomic and Metabolomic Characterization of a Mammalian Cellular Transition from Quiescence to Proliferation. Cell Reports, 2017, 20, 721-736.	2.9	41
412	The Use of Peptide Library for the Determination of Kinase Peptide Substrates. , 1998, 87, 87-98.		40
413	A Sweet New Role for EGFR in Cancer. Cancer Cell, 2008, 13, 375-376.	7.7	40
414	A sensitized genetic system for the analysis of murine B lymphocyte signal transduction pathways dependent on Bruton's tyrosine kinase. Proceedings of the National Academy of Sciences of the United States of America, 2000, 97, 6687-6692.	3.3	39

#	Article	IF	CITATIONS
415	Altered Signaling and Cell Cycle Regulation in Embryonal Stem Cells with a Disruption of the Gene for Phosphoinositide 3-Kinase Regulatory Subunit p851±. Journal of Biological Chemistry, 2003, 278, 5099-5108.	1.6	39
416	MMP-20 Is Predominately a Tooth-Specific Enzyme with a Deep Catalytic Pocket that Hydrolyzes Type V Collagenâ€. Biochemistry, 2006, 45, 3863-3874.	1.2	39
417	Association of phosphatidylinositol 3-kinase, via the SH2 domains of p85, with focal adhesion kinase in polyoma middle t-transformed fibroblasts. Biochimica Et Biophysica Acta - Molecular Cell Research, 1996, 1311, 45-52.	1.9	38
418	The Era of Cancer Discovery. Cancer Discovery, 2011, 1, 1-1.	7.7	37
419	Inhibition of 3-phosphoglycerate dehydrogenase (PHGDH) by indole amides abrogates de novo serine synthesis in cancer cells. Bioorganic and Medicinal Chemistry Letters, 2019, 29, 2503-2510.	1.0	37
420	Computational Prediction of Protein-Protein Interactions. Methods in Molecular Biology, 2015, 1278, 57-75.	0.4	37
421	Building a human kinase gene repository: Bioinformatics, molecular cloning, and functional validation. Proceedings of the National Academy of Sciences of the United States of America, 2005, 102, 8114-8119.	3.3	36
422	Human pluripotent stem cells decouple respiration from energy production. EMBO Journal, 2011, 30, 4851-4852.	3.5	36
423	EGF-receptor specificity for phosphotyrosine-primed substrates provides signal integration with Src. Nature Structural and Molecular Biology, 2015, 22, 983-990.	3.6	36
424	Targeting the PI5P4K Lipid Kinase Family in Cancer Using Covalent Inhibitors. Cell Chemical Biology, 2020, 27, 525-537.e6.	2.5	36
425	Extracellular HIV-1 Tat Protein Induces a Rapid and Selective Activation of Protein Kinase C (PKC)-α, -ϵ, and -ζ Isoforms in PC12 Cells. Biochemical and Biophysical Research Communications, 1998, 242, 332-337.	1.0	35
426	Cancer metabolism gets physical. Science Translational Medicine, 2018, 10, .	5.8	35
427	Phosphorylation-dependent substrate selectivity of protein kinase B (AKT1). Journal of Biological Chemistry, 2020, 295, 8120-8134.	1.6	35
428	Vanadium stimulates the (Na+,K+) pump in friend erythroleukemia cells and blocks erythropoiesis Journal of Cell Biology, 1983, 97, 1299-1302.	2.3	34
429	[35] SH2 domain specificity determination using oriented phosphopeptide library. Methods in Enzymology, 1995, 254, 523-535.	0.4	34
430	Development of a High-Throughput Assay for Identifying Inhibitors of TBK1 and IKKε. PLoS ONE, 2012, 7, e41494.	1.1	34
431	A Cross-Species Study of PI3K Protein-Protein Interactions Reveals the Direct Interaction of P85 and SHP2. Scientific Reports, 2016, 6, 20471.	1.6	34
432	A covalent small molecule inhibitor of glutamate-oxaloacetate transaminase 1 impairs pancreatic cancer growth. Biochemical and Biophysical Research Communications, 2020, 522, 633-638.	1.0	34

#	Article	IF	CITATIONS
433	Tissue of origin dictates GOT1 dependence and confers synthetic lethality to radiotherapy. Cancer & Metabolism, 2020, 8, 1.	2.4	34
434	High Fructose Drives the Serine Synthesis Pathway in Acute Myeloid Leukemic Cells. Cell Metabolism, 2021, 33, 145-159.e6.	7.2	34
435	Coagulation factors directly cleave SARS-CoV-2 spike and enhance viral entry. ELife, 2022, 11, .	2.8	34
436	A Fundamental Trade-off in Covalent Switching and Its Circumvention by Enzyme Bifunctionality in Glucose Homeostasis. Journal of Biological Chemistry, 2014, 289, 13010-13025.	1.6	33
437	A Glycolysis Outsider Steps into the Cancer Spotlight. Cell Metabolism, 2018, 28, 3-4.	7.2	33
438	PIP4Ks Suppress Insulin Signaling through a Catalytic-Independent Mechanism. Cell Reports, 2019, 27, 1991-2001.e5.	2.9	33
439	Human primary immunodeficiency caused by expression of a kinase-dead p110δ mutant. Journal of Allergy and Clinical Immunology, 2019, 143, 797-799.e2.	1.5	33
440	Altered propionate metabolism contributes to tumour progression and aggressiveness. Nature Metabolism, 2022, 4, 435-443.	5.1	33
441	Identification of efficient pentapeptide substrates for the tyrosine kinase pp60c-src. Journal of Medicinal Chemistry, 1995, 38, 4276-4283.	2.9	32
442	In-Gel Stable-Isotope Labeling (ISIL):  A Strategy for Mass Spectrometry-Based Relative Quantification. Journal of Proteome Research, 2006, 5, 155-163.	1.8	32
443	Genetic selection for enhanced serine metabolism in cancer development. Cell Cycle, 2011, 10, 3812-3813.	1.3	32
444	The INPP4B Tumor Suppressor Modulates EGFR Trafficking and Promotes Triple-Negative Breast Cancer. Cancer Discovery, 2020, 10, 1226-1239.	7.7	32
445	The Structure and Function of Band 3. , 1983, , 41-87.		32
446	Covalent Reactions of Wortmannin under Physiological Conditions. Chemistry and Biology, 2007, 14, 321-328.	6.2	31
447	Consensus report of the 8 and 9th Weinman Symposia on Gene x Environment Interaction in carcinogenesis: novel opportunities for precision medicine. Cell Death and Differentiation, 2018, 25, 1885-1904.	5.0	31
448	PIK3CA and MAP3K1 alterations imply luminal A status and are associated with clinical benefit from pan-PI3K inhibitor buparlisib and letrozole in ER+ metastatic breast cancer. Npj Breast Cancer, 2019, 5, 31.	2.3	31
449	Phase II, 2â€stage, 2â€arm, PIK3CA mutation stratified trial of MKâ€2206 in recurrent endometrial cancer. International Journal of Cancer, 2020, 147, 413-422.	2.3	31
450	Delta endotoxin inhibits Rb+ uptake, lowers cytoplasmic pH and inhibits a K+-ATPase inManduca sexta CHE cells. Journal of Membrane Biology, 1985, 85, 199-204.	1.0	30

#	Article	IF	CITATIONS
451	Sequence Specificity of C-Terminal Src Kinase (Csk). A Comparison with Src-Related Kinases C-Fgr and Lyn. FEBS Journal, 1997, 246, 433-439.	0.2	30
452	Quantitative InÂVivo Proteomics of Metformin Response in Liver Reveals AMPK-Dependent and -Independent Signaling Networks. Cell Reports, 2019, 29, 3331-3348.e7.	2.9	30
453	Protein kinase C of human erythrocytes phosphorylates bands 4.1 and 4.9. Biochimica Et Biophysica Acta - Molecular Cell Research, 1986, 887, 142-149.	1.9	29
454	A Peptide Library Approach Identifies a Specific Inhibitor for the ZAP-70 Protein Tyrosine Kinase. Molecular Cell, 2000, 6, 969-974.	4.5	29
455	Targeting a Common Collaborator in Cancer Development. Science Translational Medicine, 2010, 2, 48ps45.	5.8	29
456	Rewiring of glycolysis in cancer cell metabolism. Cell Cycle, 2010, 9, 4253-4253.	1.3	29
457	lκB Kinase <i>α</i> Phosphorylation of TRAF4 Downregulates Innate Immune Signaling. Molecular and Cellular Biology, 2012, 32, 2479-2489.	1.1	29
458	[12] Mapping specificity determinants for protein-protein association using protein fusions and random peptide libraries. Methods in Enzymology, 2000, 328, 157-170.	0.4	28
459	AACR Cancer Progress Report 2012. Clinical Cancer Research, 2012, 18, S1-S100.	3.2	28
460	The SRC-associated protein CUB Domain-Containing Protein-1 regulates adhesion and motility. Oncogene, 2012, 31, 653-663.	2.6	28
461	SIRT6 Puts Cancer Metabolism in the Driver's Seat. Cell, 2012, 151, 1155-1156.	13.5	28
462	Decoding key nodes in the metabolism of cancer cells: sugar & spice and all things nice. F1000 Biology Reports, 2012, 4, 2.	4.0	28
463	Phosphatidylinositol 3-Kinase Confers Resistance to Encephalomyocarditis and Herpes Simplex Virus-Induced Cell Death Through the Activation of Distinct Downstream Effectors. Journal of Immunology, 2001, 167, 4553-4559.	0.4	27
464	<i>PIK3CA</i> C2 Domain Deletions Hyperactivate Phosphoinositide 3-kinase (PI3K), Generate Oncogene Dependence, and Are Exquisitely Sensitive to PI3K î± Inhibitors. Clinical Cancer Research, 2018, 24, 1426-1435.	3.2	27
465	Biochemical Characterization and Structure-Based Mutational Analysis Provide Insight into the Binding and Mechanism of Action of Novel Aspartate Aminotransferase Inhibitors. Biochemistry, 2018, 57, 6604-6614.	1.2	27
466	Discovery and optimization of aspartate aminotransferase 1 inhibitors to target redox balance in pancreatic ductal adenocarcinoma. Bioorganic and Medicinal Chemistry Letters, 2018, 28, 2675-2678.	1.0	27
467	Kinetic analysis of guanosine 5'-O-(3-thiotriphosphate) effects on phosphatidylinositol turnover in NRK cell homogenates. Biochemistry, 1987, 26, 612-622.	1.2	26
468	Phosphoinositide 3-kinase knockout mice: role of p85α in B cell development and proliferation. Biochemical Society Transactions, 1999, 27, 624-629.	1.6	26

#	Article	IF	CITATIONS
469	Dietary Fat and Sugar in Promoting Cancer Development and Progression. Annual Review of Cancer Biology, 2019, 3, 255-273.	2.3	26
470	Characterization of PXK as a Protein Involved in Epidermal Growth Factor Receptor Trafficking. Molecular and Cellular Biology, 2010, 30, 1689-1702.	1.1	25
471	Proline rich 11 (PRR11) overexpression amplifies PI3K signaling and promotes antiestrogen resistance in breast cancer. Nature Communications, 2020, 11, 5488.	5.8	25
472	Phase I study of oral BKM120 and oral olaparib for high-grade serous ovarian cancer (HGSC) or triple-negative breast cancer (TNBC) Journal of Clinical Oncology, 2014, 32, 2510-2510.	0.8	25
473	NRF2 Rewires Cellular Metabolism to Support the Antioxidant Response. , 0, , .		24
474	Phenformin Enhances the Efficacy of ERK Inhibition in NF1-Mutant Melanoma. Journal of Investigative Dermatology, 2017, 137, 1135-1143.	0.3	23
475	Regulation of folate and methionine metabolism by multisite phosphorylation of human methylenetetrahydrofolate reductase. Scientific Reports, 2019, 9, 4190.	1.6	23
476	TRANSCRIPTION: Translocating Tubby. Science, 2001, 292, 2019-2021.	6.0	23
477	Identification and Characterization of a Phosphoinositide Phosphate Kinase Homolog. Journal of Biological Chemistry, 2004, 279, 11672-11679.	1.6	22
478	Development of an intracellularly acting inhibitory peptide selective for PKN. Biochemical Journal, 2010, 425, 445-543.	1.7	22
479	Cellular stress signaling activates type-I IFN response through FOXO3-regulated lamin posttranslational modification. Nature Communications, 2021, 12, 640.	5.8	22
480	Phase 1b Clinical Trial with Alpelisib plus Olaparib for Patients with Advanced Triple-Negative Breast Cancer. Clinical Cancer Research, 2022, 28, 1493-1499.	3.2	22
481	The plasma membrane (Mg2+)-dependent adenosine triphosphatase from the human erythrocyte is not an ion pump. Journal of Membrane Biology, 1984, 80, 185-190.	1.0	21
482	Using peptide libraries to identify optimal cleavage motifs for proteolytic enzymes. Methods, 2004, 32, 398-405.	1.9	21
483	Tyrosine Kinase BMX Phosphorylates Phosphotyrosine-Primed Motif Mediating the Activation of Multiple Receptor Tyrosine Kinases. Science Signaling, 2013, 6, ra40.	1.6	21
484	Signal Transduction: From the Atomic Age to the Post-Genomic Era. Cold Spring Harbor Perspectives in Biology, 2014, 6, a022913-a022913.	2.3	21
485	A novel small-molecule inhibitor of 3-phosphoglycerate dehydrogenase. Molecular and Cellular Oncology, 2016, 3, e1164280.	0.3	21
486	Wortmannin-C20 Conjugates Generate Wortmannin. Journal of Medicinal Chemistry, 2006, 49, 740-747.	2.9	20

#	Article	IF	CITATIONS
487	The chromatin remodeler RSF1 controls centromeric histone modifications to coordinate chromosome segregation. Nature Communications, 2018, 9, 3848.	5.8	20
488	ZIP codes for delivering SH2 domains. Cell, 2004, 116, S41-S43.	13.5	19
489	The antiproliferative cytostatic effects of a self-activating viridin prodrug. Molecular Cancer Therapeutics, 2009, 8, 1666-1675.	1.9	19
490	Genomic characteristics of trastuzumab-resistant Her2-positive metastatic breast cancer. Journal of Cancer Research and Clinical Oncology, 2017, 143, 1255-1262.	1.2	19
491	Discovery of Covalent CDK14 Inhibitors with Pan-TAIRE Family Specificity. Cell Chemical Biology, 2019, 26, 804-817.e12.	2.5	19
492	Characterization of monovalent ion transport systems in an insect cell line (Manduca sexta) Tj ETQq0 0 0 rgBT /0	Dverlock 1 2.0	.0 Tf 50 542 T 18
493	Binding Specificity and Mutational Analysis of the Phosphotyrosine Binding Domain of the Brain-specific Adaptor Protein ShcC. Journal of Biological Chemistry, 1996, 271, 11787-11791.	1.6	18
494	Synthesis and Activity of C11-Modified Wortmannin Probes for PI3 Kinase. Bioconjugate Chemistry, 2005, 16, 669-675.	1.8	17
495	Discovery and Structure–Activity Relationship Study of (<i>Z</i>)-5-Methylenethiazolidin-4-one Derivatives as Potent and Selective Pan-phosphatidylinositol 5-Phosphate 4-Kinase Inhibitors. Journal of Medicinal Chemistry, 2020, 63, 4880-4895.	2.9	17
496	Fate of a Bioactive Fluorescent Wortmannin Derivative in Cells. Bioconjugate Chemistry, 2008, 19, 130-137.	1.8	16
497	Treating cancer with phosphatidylinositol-3-kinase inhibitors: increasing efficacy and overcoming resistance. Journal of Lipid Research, 2019, 60, 747-752.	2.0	16
498	Type 2 phosphatidylinositol 4-kinase is recruited to CD4 in response to CD4 cross-linking. BBA - Proteins and Proteomics, 1995, 1248, 129-134.	2.1	15
499	Using Tandem Mass Spectrometry in Targeted Mode to Identify Activators of Class IA PI3K in Cancer. Cancer Research, 2011, 71, 5965-5975.	0.4	15
500	Ancient Sensor for Ancient Drug. Science, 2012, 336, 813-814.	6.0	15
501	4 Specificity in protein-tyrosine kinase signaling. Advances in Second Messenger and Phosphoprotein Research, 1997, 31, 41-48.	4.5	15
502	In-gel stable isotope labeling for relative quantification using mass spectrometry. Nature Protocols, 2006, 1, 46-51.	5.5	14
503	Proteomic Screening Method for Phosphopeptide Motif Binding Proteins Using Peptide Libraries. Journal of Proteome Research, 2011, 10, 4158-4164.	1.8	14
504	Mapping Post-Translational Modifications of de Novo Purine Biosynthetic Enzymes: Implications for Pathway Regulation. Journal of Proteome Research, 2019, 18, 2078-2087.	1.8	14

#	Article	IF	CITATIONS
505	Structure–Activity Relationship Study of Covalent Pan-phosphatidylinositol 5-Phosphate 4-Kinase Inhibitors. ACS Medicinal Chemistry Letters, 2020, 11, 346-352.	1.3	14
506	Conformational Changes of Na,K-ATPase Necessary for Transport. Current Topics in Membranes and Transport, 1983, , 315-322.	0.6	13
507	Prioritization schema for immunotherapy clinical trials in glioblastoma. Oncolmmunology, 2016, 5, e1145332.	2.1	13
508	Structural changes in (Na+ + K+)-ATPase accompanying detergent inactivation. Biochimica Et Biophysica Acta - Biomembranes, 1980, 599, 436-447.	1.4	12
509	LOCATION OF BINDING SITES ON THE (Na.K)-ATPase FOR FLUORESCEIN-5'-ISOTHIOCYANATE AND OUABAIN. Annals of the New York Academy of Sciences, 1982, 402, 289-291.	1.8	12
510	Modification of protein sub-nuclear localization by synthetic phosphoinositides: Evidence for nuclear phosphoinositide signaling mechanisms. Advances in Enzyme Regulation, 2005, 45, 171-185.	2.9	12
511	Cancer, metabolism, fructose, artificial sweeteners, and going cold turkey on sugar. BMC Biology, 2014, 12, 8.	1.7	12
512	Development of a CDK10/CycM in vitro Kinase Screening Assay and Identification of First Small-Molecule Inhibitors. Frontiers in Chemistry, 2020, 8, 147.	1.8	12
513	GLUT5 (SLC2A5) enables fructose-mediated proliferation independent of ketohexokinase. Cancer & Metabolism, 2021, 9, 12.	2.4	12
514	Slow Self-Activation Enhances The Potency of Viridin Prodrugs. Journal of Medicinal Chemistry, 2008, 51, 4699-4707.	2.9	12
515	Results of an abbreviated phase II study of AKT inhibitor MK-2206 in the treatment of recurrent platinum-resistant high grade serous ovarian, fallopian tube, or primary peritoneal carcinoma (NCT) Tj ETQq1 1 0.	7 8 4314 rg	gB 1 1/Overloc
516	Suppression of Nkx3.2 by phosphatidylinositol-3-kinase signaling regulates cartilage development by modulating chondrocyte hypertrophy. Cellular Signalling, 2015, 27, 2389-2400.	1.7	10
517	Pyruvate Kinase M1 Suppresses Development and Progression of Prostate Adenocarcinoma. Cancer Research, 2022, 82, 2403-2416.	0.4	10
518	Ionic regulation of MEL cell commitment. Journal of Cellular Biochemistry, 1983, 21, 1-8.	1.2	9
519	Targeting Metabolic Scavenging in Pancreatic Cancer. Clinical Cancer Research, 2014, 20, 6-8.	3.2	9
520	SIRT3 Is a Novel Metabolic Driver of and Therapeutic Target for Chemotherapy Resistant Dlbcls. Blood, 2017, 130, 643-643.	0.6	9
521	An integrated vector system for cellular studies of phage display-derived peptides. Analytical Biochemistry, 2002, 308, 364-372.	1.1	8
522	A Wortmanninâ^'Cetuximab as a Double Drug. Bioconjugate Chemistry, 2009, 20, 2185-2189.	1.8	8

#	Article	IF	CITATIONS
523	PI 3-Kinase and Receptor-Linked Signal Transduction. , 1996, , 125-175.		8
524	The role of phosphoinositide 3-kinase in human disease. Harvey Lectures, 2004, 100, 103-22.	0.2	8
525	Growth Factor and Oncogene Influences on Cell Growth Regulation. Annals of the New York Academy of Sciences, 1988, 551, 309-319.	1.8	7
526	A flattened face for membranes. Nature Structural Biology, 1998, 5, 843-845.	9.7	7
527	PI3K Enters Beta-Testing. Cell Metabolism, 2008, 8, 179-181.	7.2	7
528	Mouse Phosphoinositide 3-Kinase p $110\hat{l}\pm$ Gene: Cloning, Structural Organization, and Localization to Chromosome 3 Band B. Biochemical and Biophysical Research Communications, 1999, 262, 438-442.	1.0	6
529	Phosphatidylinositol 4-Kinases. , 1998, 105, 99-108.		5
530	Sugar free, cancer free?. Nutrition, 2012, 28, 1036.	1.1	5
531	Phosphatidylinositol 3-Kinase. Methods in Neurosciences, 1993, 18, 100-112.	0.5	5
532	Distribution and localization of phosphatidylinositol 5â€phosphate, 4â€kinase alpha and beta in the brain. Journal of Comparative Neurology, 2021, 529, 434-449.	0.9	5
533	A phase II study of MK-2206, an AKT inhibitor, in uterine serous carcinoma. Gynecologic Oncology Reports, 2022, 40, 100974.	0.3	5
534	Introduction. Current Topics in Microbiology and Immunology, 2010, 346, 1-7.	0.7	4
535	Getting Knit-PI3Ky: PIK3CA Mutation Status to Direct Multimodality Therapy?. Clinical Cancer Research, 2009, 15, 6748-6750.	3.2	2
536	Amplification of phosphoglycerate dehydrogenase diverts glycolytic flux and contributes to oncogenesis. BMC Proceedings, 2012, 6, .	1.8	2
537	EXTH-36. PI3K INHIBITION IN CONJUNCTION WITH THE KETOGENIC DIET REDUCES GROWTH AND NEUROINFLAMMATION IN PEDIATRIC HIGH-GRADE GLIOMA. Neuro-Oncology, 2019, 21, vi89-vi90.	0.6	2
538	A Decade of <i>Cancer Discovery</i> . Cancer Discovery, 2021, 11, 795-797.	7.7	2
539	SU2C phase lb study of the PI3Kα inhibitor BYL719 with letrozole in ER+/HER2– metastatic breast cancer (MBC) Journal of Clinical Oncology, 2014, 32, 516-516.	0.8	2
540	Discovery and Characterization of a Novel Allosteric Small-Molecule Inhibitor of NADP ⁺ -Dependent Malic Enzyme 1. Biochemistry, 0, , .	1.2	2

#	Article	IF	CITATIONS
541	D2-07: Mechanisms of activating PI3K signaling in lung cancers that become resistant EGFR tyrosine kinase inhibitors. Journal of Thoracic Oncology, 2007, 2, S396.	0.5	1
542	Lewis C. Cantley. Current Biology, 2009, 19, R540-R541.	1.8	1
543	Acetate Fuels the Cancer Engine. Cell, 2015, 160, 567.	13.5	1
544	Membrane Lipids Speak to Histones. Molecular Cell, 2017, 66, 163-164.	4.5	1
545	A â€~fast'er way to treat breast cancer. Nature Metabolism, 2020, 2, 559-560.	5.1	1
546	Abstract CT338: Combination of a PI3K- and a PARP-inhibitor to treat high-grade serous ovarian or triple-negative breast cancer. , 2014, , .		1
547	A phase Ib study of BKM120 combined with abiraterone acetate for castrate-resistant, metastatic prostate cancer Journal of Clinical Oncology, 2014, 32, TPS2641-TPS2641.	0.8	1
548	Development of Inhibitors of PIP4K2 As a Treatment for Patients with Hematologic Malignancies. Blood, 2018, 132, 213-213.	0.6	1
549	OUP accepted manuscript. American Journal of Clinical Nutrition, 2022, 115, 595-597.	2.2	1
550	PI 3-KINASE KNOCKOUT MICE: ROLE OF p85 $\hat{1}$ ± IN B CELL DEVELOPMENT AND PROLIFERATION. Biochemical Society Transactions, 1999, 27, A73-A73.	1.6	0
551	Phosphoinositide biology – messages from lipids. Nature Cell Biology, 2000, 2, E190-E190.	4.6	0
552	Cancer Discovery at One Year: The Editors' Interim Analysis. Cancer Discovery, 2012, 2, vi-vi.	7.7	0
553	РІЗК., 0,, 218-230.		0
554	Seeking out the sweet spot in cancer therapeutics: an interview with Lewis Cantley. DMM Disease Models and Mechanisms, 2016, 9, 911-6.	1.2	0
555	PI3K-Akt-mTOR Signaling in Cancer and Cancer Therapeutics. Cancer Drug Discovery and Development, 2016, , 1-25.	0.2	0
556	DDRE-22. TARGETING SERINE SYNTHESIS IN BRAIN METASTASIS. Neuro-Oncology Advances, 2021, 3, i11-i11.	0.4	0
557	DDRE-07. FATTY ACID SYNTHESIS IS REQUIRED FOR BREAST CANCER BRAIN METASTASIS. Neuro-Oncology Advances, 2021, 3, i7-i8.	0.4	0
558	FSMP-10. CYSTEINE INDUCES CYTOTOXICITY IN GLIOBLASTOMA THROUGH MITOCHONDRIAL HYDROGEN PEROXIDE PRODUCTION. Neuro-Oncology Advances, 2021, 3, i18-i18.	0.4	0

#	Article	IF	CITATIONS
559	Abstract PO-051: Radiation therapy enhances the presentation of phosphopeptides by MHC-I on cancer cells. , 2021, , .		0
560	Abstract 16: Patterns and regulation of post translational modifications in cancer. , 2021, , .		0
561	Phosphatidyl Inositol (4,5)P2 Marks Megakaryocyte Internal Membranes and Is Associated with Megakaryocyte Maturation and Platelet Release Blood, 2005, 106, 732-732.	0.6	0
562	Cancer Cell Metabolism. , 2012, , 245-261.		0
563	Ras Activity Regulation by Monoubiquitination. FASEB Journal, 2013, 27, 1046.3.	0.2	0
564	Na+ and Ca2+ Fluxes and Differentiation of Transformed Cells. , 1985, , 173-178.		0
565	Comparison of the Na+ Pump and the Ouabain-Resistant K+ Transport System with Other Metal Ion Transport ATPases. , 1986, , 249-259.		0
566	Phosphatidylinositol 3-kinase: A Novel Signal Transduction Pathway?. , 1992, , 175-194.		0
567	Role of Phosphatidylinositol 3-Kinase in Growth Factor and Oncogene Signaling. , 1993, , 149-165.		0
568	The Structural Basis for Specificity in Protein-Tyrosine Kinase Signaling. , 1996, , 5-16.		0
569	Abstract NG05: Depletion of a putatively druggable class of phosphatidylinositol kinases inhibits growth of p53 null tumors. , 2014, , .		0
570	Maintenance of Pluripotent Stem Cells is Influenced by Ser/Thr Metabolism. Blood, 2014, 124, SCI-43-SCI-43.	0.6	0
571	Abstract A33: Utilizing insulin the treatment of prostate cancer with BKM120 abrogates the therapeutic effect of PI3K pathway inhibition. , 2015, , .		0
572	Abstract IA21: Combination treatments that include PI3K-inhibitors for the treatment of triple-negative breast cancer. , 2015, , .		0
573	Abstract IA01: Targeting phosphoinositide 3-kinase for cancer therapy. , 2015, , .		0
574	A Topical Report on the Design Principles of Metabolism. , 2018, , 29-44.		0
575	Obesity, Insulin Resistance and Cancer: The PI3K connection. FASEB Journal, 2018, 32, 250.4.	0.2	0
576	EXTH-12. INHIBITION OF EPIDERMAL GROWTH FACTOR RECEPTOR AND PLATELET-DERIVED GROWTH FACTOR RECEPTOR-ALPHA EXERTS SYNERGISTIC EFFICACY IN GLIOBLASTOMA. Neuro-Oncology, 2021, 23, vi165-vi166.	0.6	0

#	ARTICLE	IF	CITATIONS
577	FOXO1 Dependent Transcription Network Is a Targetable Vulnerability of Mantle Cell Lymphoma. Blood, 2021, 138, 30-30.	0.6	Ο
578	TAMI-38. CYSTEINE-PROMOTING COMPOUNDS INDUCE MITOCHONDRIAL TOXICITY IN GLIOBLASTOMA THROUGH ALTERED PYRUVATE AND SERINE METABOLISM. Neuro-Oncology, 2020, 22, ii221-ii221.	0.6	0