

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3016613/publications.pdf Version: 2024-02-01

LINC LL

#	Article	IF	CITATIONS
1	Mathematical model of dynamic imbibition in nanoporous reservoirs. Petroleum Exploration and Development, 2022, 49, 170-178.	7.0	7
2	A comprehensive review on the flow behaviour in shale gas reservoirs: Multiâ€scale, multiâ€phase, and multiâ€physics. Canadian Journal of Chemical Engineering, 2022, 100, 3084-3122.	1.7	5
3	A relative permeability model considering nanoconfinement and dynamic contact angle effects for tight reservoirs. Energy, 2022, 258, 124846.	8.8	6
4	Dynamic behavior of miscible binary fluid mixtures in nanopores: Implications for CO2-enhanced oil flow in shale reservoirs. Fuel, 2022, 327, 125128.	6.4	8
5	The increased viscosity effect for fracturing fluid imbibition in shale. Chemical Engineering Science, 2021, 232, 116352.	3.8	10
6	Determination of CH4, C2H6 and CO2 adsorption in shale kerogens coupling sorption-induced swelling. Chemical Engineering Journal, 2021, 410, 127690.	12.7	31
7	Capillary dynamics of confined water in nanopores: The impact of precursor films. Chemical Engineering Journal, 2021, 409, 128113.	12.7	10
8	Effect of Surface Force on Nanoconfined Shale-Gas Flow in Slit Channels. SPE Journal, 2021, 26, 448-460.	3.1	2
9	Pore-Scale Perspective of Gas/Water Two-Phase Flow in Shale. SPE Journal, 2021, 26, 828-846.	3.1	45
10	Model for Interfacial Tension of Nanoconfined Lennard-Jones Fluid. Energy & Fuels, 2021, 35, 4044-4052.	5.1	3
11	A Critical Review of Enhanced Oil Recovery by Imbibition: Theory and Practice. Energy & Fuels, 2021, 35, 5643-5670.	5.1	44
12	Effect of Dynamic Contact Angle on Spontaneous Capillary-Liquid-Liquid Imbibition by Molecular Kinetic Theory. SPE Journal, 2021, , 1-16.	3.1	10
13	Wettability effects on phase behavior and interfacial tension in shale nanopores. Fuel, 2021, 290, 119983.	6.4	50
14	Investment Strategy of CO2-EOR in China: Analysis Based on Real Option Approach. , 2021, , .		1
15	Gas storage and transport in porous media: From shale gas to helium-3. Planetary and Space Science, 2021, 204, 105283.	1.7	5
16	Practical application of machine learning on fast phase equilibrium calculations in compositional reservoir simulations. Journal of Computational Physics, 2020, 401, 109013.	3.8	25
17	Molecular dynamics computations of brine-CO2/CH4-shale contact angles: Implications for CO2 sequestration and enhanced gas recovery. Fuel, 2020, 280, 118590.	6.4	32
18	Molecular-scale friction at a water–graphene interface and its relationship with slip behavior. Physics of Fluids, 2020, 32, .	4.0	7

Jing Li

#	Article	IF	CITATIONS
19	Modelling the Apparent Viscosity of Water Confined in Nanoporous Shale: Effect of the Fluid/Pore-Wall Interaction. , 2020, , .		1
20	Quasi-Continuum Water Flow under Nanoconfined Conditions: Coupling the Effective Viscosity and the Slip Length. Industrial & Engineering Chemistry Research, 2020, 59, 20504-20514.	3.7	3
21	Effects of helium adsorption in carbon nanopores on apparent void volumes and excess methane adsorption isotherms. Fuel, 2020, 270, 117499.	6.4	15
22	Nanoconfinement Effect on Surface Tension: Perspectives from Molecular Potential Theory. Langmuir, 2020, 36, 8764-8776.	3.5	11
23	Mesoscopic method to study water flow in nanochannels with different wettability. Physical Review E, 2020, 102, 013306.	2.1	28
24	Effects of an adsorbent accessible volume on methane adsorption on shale. Computer Methods in Applied Mechanics and Engineering, 2020, 370, 113222.	6.6	14
25	Dynamic wetting of solid-liquid-liquid system by molecular kinetic theory. Journal of Colloid and Interface Science, 2020, 579, 470-478.	9.4	11
26	Laboratory Research on Gas Transport in Shale Nanopores Considering the Stress Effect and Slippage Effect. Journal of Geophysical Research: Solid Earth, 2020, 125, e2019JB018256.	3.4	9
27	On the Negative Excess Isotherms for Methane Adsorption at High Pressure: Modeling and Experiment. SPE Journal, 2019, 24, 2504-2525.	3.1	12
28	NANOSCALE PORE SIZE DISTRIBUTION EFFECTS ON GAS PRODUCTION FROM FRACTAL SHALE ROCKS. Fractals, 2019, 27, 1950142.	3.7	41
29	Effects of Temperature and Pressure on Spontaneous Counter-Current Imbibition in Unsaturated Porous Media. Energy & Fuels, 2019, 33, 8544-8556.	5.1	11
30	Modeling the confined fluid flow in micro-nanoporous media under geological temperature and pressure. International Journal of Heat and Mass Transfer, 2019, 145, 118758.	4.8	18
31	Roles of multicomponent adsorption and geomechanics in the development of an Eagle Ford shale condensate reservoir. Fuel, 2019, 242, 710-718.	6.4	18
32	Effects of energetic heterogeneity on gas adsorption and gas storage in geologic shale systems. Applied Energy, 2019, 251, 113368.	10.1	58
33	Ultrahigh Water Flow Enhancement by Optimizing Nanopore Chemistry and Geometry. Langmuir, 2019, 35, 8867-8873.	3.5	26
34	Nanoconfinement Effect on <i>n</i> -Alkane Flow. Journal of Physical Chemistry C, 2019, 123, 16456-16461.	3.1	43
35	Predicting the fracture initiation pressure for perforated water injection wells in fossil energy development. International Journal of Hydrogen Energy, 2019, 44, 16257-16270.	7.1	7
36	Quantitative prediction of oil and gas prospects of the Sinian-Lower Paleozoic in the Sichuan Basin in central China. Energy, 2019, 174, 861-872.	8.8	37

Jing Li

#	Article	IF	CITATIONS
37	Shale gas transport in wedged nanopores with water films. Journal of Natural Gas Science and Engineering, 2019, 66, 217-232.	4.4	7
38	Artificial neural network assisted two-phase flash calculations in isothermal and thermal compositional simulations. Fluid Phase Equilibria, 2019, 486, 59-79.	2.5	28
39	Effect of water saturation on gas slippage in tight rocks. Fuel, 2018, 225, 519-532.	6.4	53
40	A Model for Gas Transport in Dual-Porosity Shale Rocks with Fractal Structures. Industrial & Engineering Chemistry Research, 2018, 57, 6530-6537.	3.7	32
41	Water adsorption and its impact on the pore structure characteristics of shale clay. Applied Clay Science, 2018, 155, 126-138.	5.2	174
42	A Fractal Model for Gas–Water Relative Permeability in Inorganic Shale with Nanoscale Pores. Transport in Porous Media, 2018, 122, 305-331.	2.6	51
43	Effects of slick water fracturing fluid on pore structure and adsorption characteristics of shale reservoir rocks. Journal of Natural Gas Science and Engineering, 2018, 51, 27-36.	4.4	45
44	Manipulating the Flow of Nanoconfined Water by Temperature Stimulation. Angewandte Chemie - International Edition, 2018, 57, 8432-8437.	13.8	41
45	Real gas transport in shale matrix with fractal structures. Fuel, 2018, 219, 353-363.	6.4	61
46	Capillary filling under nanoconfinement: The relationship between effective viscosity and water-wall interactions. International Journal of Heat and Mass Transfer, 2018, 118, 900-910.	4.8	65
47	A discrete model for apparent gas permeability in nanoporous shale coupling initial water distribution. Journal of Natural Gas Science and Engineering, 2018, 59, 80-96.	4.4	24
48	Effect of water saturation on gas slippage in circular and angular pores. AICHE Journal, 2018, 64, 3529-3541.	3.6	36
49	A multi-site model to determine supercritical methane adsorption in energetically heterogeneous shales. Chemical Engineering Journal, 2018, 349, 438-455.	12.7	78
50	An apparent liquid permeability model of dual-wettability nanoporous media: A case study of shale. Chemical Engineering Science, 2018, 187, 280-291.	3.8	68
51	The Role of Adsorbed Water on Pore Structure Characteristics and Methane Adsorption of Shale Clay. , 2018, , .		0
52	Modelling the water transport behavior in organic-rich nanoporous shale with generalized lattice Boltzmann method. International Journal of Heat and Mass Transfer, 2018, 127, 123-134.	4.8	36
53	Capillary dynamic under nanoconfinement: Coupling the energy dissipation of contact line and confined water. International Journal of Heat and Mass Transfer, 2018, 127, 329-338.	4.8	11
54	Gas Transport in Shale Nanopores with Mobile High-Viscosity Water Film. Industrial & Engineering Chemistry Research, 2018, 57, 11219-11228.	3.7	6

Jing Li

#	Article	IF	CITATIONS
55	Manipulating the Flow of Nanoconfined Water by Temperature Stimulation. Angewandte Chemie, 2018, 130, 8568-8573.	2.0	8
56	Capillary filling of confined water in nanopores: Coupling the increased viscosity and slippage. Chemical Engineering Science, 2018, 186, 228-239.	3.8	59
57	Anomalous Capillary Rise under Nanoconfinement: A View of Molecular Kinetic Theory. Langmuir, 2018, 34, 7714-7725.	3.5	32
58	Experimental and numerical study on the relationship between water imbibition and salt ion diffusion in fractured shale reservoirs. Journal of Natural Gas Science and Engineering, 2017, 38, 283-297.	4.4	50
59	Thermodynamic and Structural Characterization of Bulk Organic Matter in Chinese Silurian Shale: Experimental and Molecular Modeling Studies. Energy & Fuels, 2017, 31, 4851-4865.	5.1	53
60	Pore characteristics differences between clay-rich and clay-poor shales of the Lower Cambrian Niutitang Formation in the Northern Guizhou area, and insights into shale gas storage mechanisms. International Journal of Coal Geology, 2017, 178, 13-25.	5.0	75
61	Flow behavior of gas confined in nanoporous shale at high pressure: Real gas effect. Fuel, 2017, 205, 173-183.	6.4	146
62	Wettability effect on nanoconfined water flow. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, 3358-3363.	7.1	407
63	Numerical investigation of the well shut-in and fracture uncertainty on fluid-loss and production performance in gas-shale reservoirs. Journal of Natural Gas Science and Engineering, 2017, 46, 421-435.	4.4	67
64	Methane Transport through Nanoporous Shale with Sub-Irreducible Water Saturation. , 2017, , .		2
65	Gas Slippage in Tight Rocks With Sub-irreducible Water Saturation. , 2017, , .		2
66	Mechanism of Liquid-Phase Adsorption and Desorption in Coalbed Methane Systems: A New Insight Into an Old Problem. SPE Reservoir Evaluation and Engineering, 2017, 20, 639-653.	1.8	16
67	Thickness and stability of water film confined inside nanoslits and nanocapillaries of shale and clay. International Journal of Coal Geology, 2017, 179, 253-268.	5.0	162
68	Investigation of Gas-Water Distribution Characteristics in Kerogen Pores: A View of Intermolecular Surface Force. , 2016, , .		4
69	Water Sorption and Distribution Characteristics inside Shale Nano-capillaries and Nano-channels: Effect of Surface Force Interactions. , 2016, , .		0
70	Water distribution characteristic and effect on methane adsorption capacity in shale clay. International Journal of Coal Geology, 2016, 159, 135-154.	5.0	268
71	A Universal Model of Water Flow Through Nanopores in Unconventional Reservoirs: Relationships Between Slip, Wettability and Viscosity. , 2016, , .		6
72	Water Sorption and Distribution Characteristics in Clay and Shale: Effect of Surface Force. Energy & amp; Fuels, 2016, 30, 8863-8874.	5.1	123

		Jing Li		
#	ARTICLE		IF	CITATIONS
73	Characterization of the Lower Cambrian Shale in the Northwestern Guizhou Province, Sc Implications for Shale-Gas Potential. Energy & Fuels, 2015, 29, 6383-6393.	outh China:	5.1	40