

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/301557/publications.pdf Version: 2024-02-01

Ιιλ ΔΝΙ

#	Article	IF	CITATIONS
1	Process-structure-property of additively manufactured continuous carbon fiber reinforced thermoplastic: an investigation of mode I interlaminar fracture toughness. Mechanics of Advanced Materials and Structures, 2022, 29, 1418-1430.	2.6	35
2	Systematic Engineering approach for optimization of multi-component alternative protein-fortified 3D printing food Ink. Food Hydrocolloids, 2022, 131, 107803.	10.7	17
3	Reversible 4D printing. , 2022, , 395-417.		0
4	A review on spacers and membranes: Conventional or hybrid additive manufacturing?. Water Research, 2021, 188, 116497.	11.3	46
5	3D food printing of fresh vegetables using food hydrocolloids for dysphagic patients. Food Hydrocolloids, 2021, 114, 106546.	10.7	167
6	Tissue engineering and 3D printing of bioartificial pancreas for regenerative medicine in diabetes. Trends in Endocrinology and Metabolism, 2021, 32, 609-622.	7.1	18
7	Fouling mitigation in reverse osmosis processes with 3D printed sinusoidal spacers. Water Research, 2021, 207, 117818.	11.3	25
8	Three-Dimensional Printing of Food Foams Stabilized by Hydrocolloids for Hydration in Dysphagia. International Journal of Bioprinting, 2021, 7, 393.	3.4	27
9	Antibiotic resistance modifying ability of phytoextracts in anthrax biological agent Bacillus anthracis and emerging superbugs: a review of synergistic mechanisms. Annals of Clinical Microbiology and Antimicrobials, 2021, 20, 79.	3.8	8
10	Introduction to rapid prototyping of biomaterials. , 2020, , 1-15.		11
11	Induction Sintering of Silver Nanoparticle Inks on Polyimide Substrates. Advanced Materials Technologies, 2020, 5, 1900897.	5.8	39
12	Contactless reversible 4D-printing for 3D-to-3D shape morphing. Virtual and Physical Prototyping, 2020, 15, 481-495.	10.4	36
13	Acoustic absorptions of multifunctional polymeric cellular structures based on triply periodic minimal surfaces fabricated by stereolithography. Virtual and Physical Prototyping, 2020, 15, 242-249.	10.4	85
14	3D Printing of Polymeric Multi-Layer Micro-Perforated Panels for Tunable Wideband Sound Absorption. Polymers, 2020, 12, 360.	4.5	32
15	Application of Machine Learning in 3D Bioprinting: Focus on Development of Big Data and Digital Twin. International Journal of Bioprinting, 2020, 7, 342.	3.4	54
16	Bioprinting of 3D in vitro skeletal muscle models: A review. Materials and Design, 2020, 193, 108794.	7.0	57
17	Impact of Additive Manufacturing on Supply Chain Complexity. , 2020, , .		2
18	Preliminary Investigation of the Reversible 4D Printing of a Dual-Layer Component. Engineering, 2019, 5, 1159-1170.	6.7	42

Jia An

#	Article	IF	CITATIONS
19	Layer-by-layer ultraviolet assisted extrusion-based (UAE) bioprinting of hydrogel constructs with high aspect ratio for soft tissue engineering applications. PLoS ONE, 2019, 14, e0216776.	2.5	99
20	Metallic Nanoparticle Inks for 3D Printing of Electronics. Advanced Electronic Materials, 2019, 5, 1800831.	5.1	166
21	3D food printing: a categorised review of inks and their development. Virtual and Physical Prototyping, 2019, 14, 203-218.	10.4	100
22	Effect of Heat Treatment on Repetitively Scanned SLM NiTi Shape Memory Alloy. Materials, 2019, 12, 77.	2.9	32
23	Fabrication of SLM NiTi Shape Memory Alloy via Repetitive Laser Scanning. Shape Memory and Superelasticity, 2018, 4, 112-120.	2.2	34
24	3D neural tissue models: From spheroids to bioprinting. Biomaterials, 2018, 154, 113-133.	11.4	207
25	Design and 4D Printing of Cross-Folded Origami Structures: A Preliminary Investigation. Materials, 2018, 11, 376.	2.9	40
26	A Review of Selective Laser Melted NiTi Shape Memory Alloy. Materials, 2018, 11, 519.	2.9	88
27	Comparison of solid, liquid and powder forms of 3D printing techniques in membrane spacer fabrication. Journal of Membrane Science, 2017, 537, 283-296.	8.2	66
28	Fundamentals and applications of 3D printing for novel materials. Applied Materials Today, 2017, 7, 120-133.	4.3	925
29	Hierarchically self-morphing structure through 4D printing. Virtual and Physical Prototyping, 2017, 12, 61-68.	10.4	70
30	Multi-stage responsive 4D printed smart structure through varying geometric thickness of shape memory polymer. Smart Materials and Structures, 2017, 26, 125001.	3.5	53
31	A highly printable and biocompatible hydrogel composite for direct printing of soft and perfusable vasculature-like structures. Scientific Reports, 2017, 7, 16902.	3.3	142
32	Two-Way 4D Printing: A Review on the Reversibility of 3D-Printed Shape Memory Materials. Engineering, 2017, 3, 663-674.	6.7	225
33	Bioprinting of Thermoresponsive Hydrogels for Next Generation Tissue Engineering: A Review. Macromolecular Materials and Engineering, 2017, 302, 1600266.	3.6	135
34	3D Printing and Bioprinting in MEMS Technology. Micromachines, 2017, 8, 229.	2.9	10
35	Roles of support materials in 3D bioprinting – Present and future. International Journal of Bioprinting, 2017, 3, 83.	3.4	37
36	Special Issue "Biomaterials and Bioprinting― Molecules, 2016, 21, 1231.	3.8	2

Jia An

#	Article	IF	CITATIONS
37	An engineering perspective on 3D printed personalized scaffolds for tracheal suspension technique. Journal of Thoracic Disease, 2016, 8, E1723-E1725.	1.4	10
38	A Mathematical Model on the Resolution of Extrusion Bioprinting for the Development of New Bioinks. Materials, 2016, 9, 756.	2.9	113
39	A Solvent-Free Surface Suspension Melt Technique for Making Biodegradable PCL Membrane Scaffolds for Tissue Engineering Applications. Molecules, 2016, 21, 386.	3.8	5
40	Laser and electronâ€beam powderâ€bed additive manufacturing of metallic implants: A review on processes, materials and designs. Journal of Orthopaedic Research, 2016, 34, 369-385.	2.3	690
41	Characterization, mechanical behavior and in vitro evaluation of a melt-drawn scaffold for esophageal tissue engineering. Journal of the Mechanical Behavior of Biomedical Materials, 2016, 57, 246-259.	3.1	27
42	The potential to enhance membrane module design with 3D printing technology. Journal of Membrane Science, 2016, 499, 480-490.	8.2	238
43	Effect of gas plasma on polycaprolactone (PCL) membrane wettability and collagen type I immobilized for enhancing cell proliferation. Materials Letters, 2016, 171, 293-296.	2.6	27
44	A Perspective on 4D Bioprinting. International Journal of Bioprinting, 2016, 2, .	3.4	84
45	Design and 3D Printing of Scaffolds and Tissues. Engineering, 2015, 1, 261-268.	6.7	344
46	Biodegradable Polymeric Films and Membranes Processing and Forming for Tissue Engineering. Macromolecular Materials and Engineering, 2015, 300, 858-877.	3.6	41
47	Smooth Muscle Cell Alignment and Phenotype Control by Melt Spun Polycaprolactone Fibers for Seeding of Tissue Engineered Blood Vessels. International Journal of Biomaterials, 2015, 2015, 1-8.	2.4	34
48	Fabrication and in vitro analysis of tubular scaffolds by melt-drawing for esophageal tissue engineering. Materials Letters, 2015, 159, 424-427.	2.6	22
49	3D printing of smart materials: A review on recent progresses in 4D printing. Virtual and Physical Prototyping, 2015, 10, 103-122.	10.4	660
50	Layer-by-layer printing of laminated graphene-based interdigitated microelectrodes for flexible planar micro-supercapacitors. Electrochemistry Communications, 2015, 51, 33-36.	4.7	169
51	A novel 3D printing method for cell alignment and differentiation. International Journal of Bioprinting, 2015, , .	3.4	14
52	Introduction to rapid prototyping of biomaterials. , 2014, , 1-15.		13
53	3D Printing of Polycaprolactone Membrane. , 2014, , .		0

Jia An

#	Article	IF	CITATIONS
55	A Comparative Study on Selective Laser Melting and Electron Beam Melting Process for Orthopedic Implants. , 2014, , .		0
56	Title is missing!. , 2014, , .		0
57	Clothing polymer fibers with well-aligned and high-aspect ratio carbon nanotubes. Nanoscale, 2013, 5, 2870.	5.6	37
58	Advanced nanobiomaterials for tissue engineering and regenerative medicine. Nanomedicine, 2013, 8, 501-503.	3.3	3
59	Advanced nanobiomaterial strategies for the development of organized tissue engineering constructs. Nanomedicine, 2013, 8, 591-602.	3.3	37
60	Laser sintered porous polycaprolacone scaffolds loaded with hyaluronic acid and gelatin-grafted thermoresponsive hydrogel for cartilage tissue engineering. Bio-Medical Materials and Engineering, 2013, 23, 533-543.	0.6	7
61	Solvent-free fabrication of three dimensionally aligned polycaprolactone microfibers for engineering of anisotropic tissues. Biomedical Microdevices, 2012, 14, 863-872.	2.8	35
62	Biodegradable Double-layer Cell Carriers for Tissue Engineering. , 2011, , .		0
63	A Portable Device for Fabricating Biomaterial Microfiber Bundles. Key Engineering Materials, 2010, 447-448, 750-754.	0.4	1
64	Automated fabrication of three dimensional porous microfiber scaffolds for tissue engineering. , 2010, , .		0