David S Fischer

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3014695/publications.pdf

Version: 2024-02-01

567281 794594 1,922 19 15 19 citations h-index g-index papers 29 29 29 2793 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Cell-Type-Specific Impact of Glucocorticoid Receptor Activation on the Developing Brain: A Cerebral Organoid Study. American Journal of Psychiatry, 2022, 179, 375-387.	7.2	33
2	Toward modeling metabolic state from single-cell transcriptomics. Molecular Metabolism, 2022, 57, 101396.	6. 5	27
3	Squidpy: a scalable framework for spatial omics analysis. Nature Methods, 2022, 19, 171-178.	19.0	308
4	Spatial components of molecular tissue biology. Nature Biotechnology, 2022, 40, 308-318.	17.5	148
5	Ultraâ€high sensitivity mass spectrometry quantifies singleâ€cell proteome changes upon perturbation. Molecular Systems Biology, 2022, 18, e10798.	7.2	261
6	Asc-1 regulates white versus beige adipocyte fate in a subcutaneous stromal cell population. Nature Communications, 2021, 12, 1588.	12.8	17
7	Single-cell meta-analysis of SARS-CoV-2 entry genes across tissues and demographics. Nature Medicine, 2021, 27, 546-559.	30.7	261
8	Graph representation learning for single-cell biology. Current Opinion in Systems Biology, 2021, 28, 100347.	2.6	15
9	Single-cell RNA sequencing reveals ex vivo signatures of SARS-CoV-2-reactive T cells through â€reverse phenotyping'. Nature Communications, 2021, 12, 4515.	12.8	23
10	Sfaira accelerates data and model reuse in single cell genomics. Genome Biology, 2021, 22, 248.	8.8	18
11	Group Testing for SARS-CoV-2 Allows for Up to 10-Fold Efficiency Increase Across Realistic Scenarios and Testing Strategies. Frontiers in Public Health, 2021, 9, 583377.	2.7	25
12	EpiScanpy: integrated single-cell epigenomic analysis. Nature Communications, 2021, 12, 5228.	12.8	59
13	Identification and characterization of distinct brown adipocyte subtypes in C57BL/6J mice. Life Science Alliance, 2021, 4, e202000924.	2.8	14
14	Automatic identification of relevant genes from low-dimensional embeddings of single-cell RNA-seq data. Bioinformatics, 2020, 36, 4291-4295.	4.1	7
15	Predicting antigen specificity of single T cells basedÂon <scp>TCR CDR</scp> 3 regions. Molecular Systems Biology, 2020, 16, e9416.	7.2	68
16	Concepts and limitations for learning developmental trajectories from single cell genomics. Development (Cambridge), 2019, 146, .	2.5	177
17	Inferring population dynamics from single-cell RNA-sequencing time series data. Nature Biotechnology, 2019, 37, 461-468.	17.5	85
18	Impulse model-based differential expression analysis of time course sequencing data. Nucleic Acids Research, 2018, 46, e119.	14.5	81

#	Article	IF	CITATIONS
19	Single cells make big data: New challenges and opportunities in transcriptomics. Current Opinion in Systems Biology, 2017, 4, 85-91.	2.6	171