List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3014081/publications.pdf Version: 2024-02-01

FLEANOR N FISH

#	Article	IF	CITATIONS
1	Introduction. Vaccine, 2022, 40, 1513-1515.	3.8	Ο
2	Tribute to Howard Young. Journal of Interferon and Cytokine Research, 2022, , .	1.2	0
3	Discovery of a signaling feedback circuit that defines interferon responses in myeloproliferative neoplasms. Nature Communications, 2022, 13, 1750.	12.8	8
4	Plasma Proteomic Analysis Distinguishes Severity Outcomes of Human Ebola Virus Disease. MBio, 2022, 13, e0056722.	4.1	5
5	Regulation of IFNα-induced expression of the short ACE2 isoform by ULK1. Molecular Immunology, 2022, 147, 1-9.	2.2	1
6	Schlafen 5 as a novel therapeutic target in pancreatic ductal adenocarcinoma. Oncogene, 2021, 40, 3273-3286.	5.9	8
7	A combination treatment of IFN-α2b and IFN-γ accelerates viral clearance and control inflammatory response in COVID-19: Preliminary results of a randomized controlled trial. Annals of Antivirals and Antiretrovirals, 2021, , 001-014.	0.5	2
8	A cluster randomized trial of interferon ß-1a for the reduction of transmission of SARS-Cov-2: protocol for the Containing Coronavirus Disease 19 trial (ConCorD-19). BMC Infectious Diseases, 2021, 21, 814.	2.9	4
9	Interferon-α2b Treatment for COVID-19 Is Associated with Improvements in Lung Abnormalities. Viruses, 2021, 13, 44.	3.3	29
10	Type I Interferon (IFN)-Regulated Activation of Canonical and Non-Canonical Signaling Pathways. Frontiers in Immunology, 2020, 11, 606456.	4.8	98
11	Interferon-α2b Treatment for COVID-19. Frontiers in Immunology, 2020, 11, 1061.	4.8	314
12	Amanda E. I. Proudfoot 1949–2019. Nature Immunology, 2020, 21, 241-241.	14.5	0
13	Introduction to special issue on interferons. Seminars in Immunology, 2019, 43, 101327.	5.6	0
14	Global virus outbreaks: Interferons as 1st responders. Seminars in Immunology, 2019, 43, 101300.	5.6	113
15	Identification and targeting of novel CDK9 complexes in acute myeloid leukemia. Blood, 2019, 133, 1171-1185.	1.4	26
16	Sirtuin 2–mediated deacetylation of cyclin-dependent kinase 9 promotes STAT1 signaling in type I interferon responses. Journal of Biological Chemistry, 2019, 294, 827-837.	3.4	24
17	IFN-γ–inducible antiviral responses require ULK1-mediated activation of MLK3 and ERK5. Science Signaling, 2018, 11, .	3.6	17
18	Slfn2 Regulates Type I Interferon Responses by Modulating the NF- <i>κ</i> B Pathway. Molecular and Cellular Biology, 2018, 38, .	2.3	13

ELEANOR N FISH

#	Article	IF	CITATIONS
19	Chemokines in breast cancer: Regulating metabolism. Cytokine, 2018, 109, 57-64.	3.2	21
20	Central Regulatory Role for SIN1 in Interferon γ (IFNγ) Signaling and Generation of Biological Responses. Journal of Biological Chemistry, 2017, 292, 4743-4752.	3.4	6
21	Interactions Between NS1 of Influenza A Viruses and Interferon-α/β: Determinants for Vaccine Development. Journal of Interferon and Cytokine Research, 2017, 37, 331-341.	1.2	6
22	Residues F103 and M106 within the influenza A virus NS1 CPSF4-binding region regulate interferon-stimulated gene translation initiation. Virology, 2017, 508, 170-179.	2.4	7
23	Interleukin-34 Promotes Fibrocyte Proliferation. Journal of Interferon and Cytokine Research, 2017, 37, 440-448.	1.2	15
24	Cutting Edge: Endogenous IFN-β Regulates Survival and Development of Transitional B Cells. Journal of Immunology, 2017, 199, 2618-2623.	0.8	28
25	Interferonâ€ <i>β</i> regulates dendritic cell activation and migration in experimental autoimmune encephalomyelitis. Immunology, 2017, 152, 439-450.	4.4	18
26	A Conserved Residue, Tyrosine (Y) 84, in H5N1 Influenza A Virus NS1 Regulates IFN Signaling Responses to Enhance Viral Infection. Viruses, 2017, 9, 107.	3.3	7
27	CCL5-CCR5 interactions modulate metabolic events during tumor onset to promote tumorigenesis. BMC Cancer, 2017, 17, 834.	2.6	34
28	Interferon β-1a for the treatment of Ebola virus disease: A historically controlled, single-arm proof-of-concept trial. PLoS ONE, 2017, 12, e0169255.	2.5	48
29	Changing oral vaccine to inactivated polio vaccine might increase mortality. Lancet, The, 2016, 387, 1054-1055.	13.7	21
30	CCL5 activation of CCR5 regulates cell metabolism to enhance proliferation of breast cancer cells. Open Biology, 2016, 6, 160122.	3.6	51
31	Interferon γ (IFNγ) Signaling via Mechanistic Target of Rapamycin Complex 2 (mTORC2) and Regulatory Effects in the Generation of Type II Interferon Biological Responses. Journal of Biological Chemistry, 2016, 291, 2389-2396.	3.4	25
32	Fibrocyte and T cell interactions promote disease pathogenesis in rheumatoid arthritis. Journal of Autoimmunity, 2016, 69, 38-50.	6.5	24
33	Small Molecule Agonists for the Type I Interferon Receptor: An <i>In Silico</i> Approach. Journal of Interferon and Cytokine Research, 2016, 36, 180-191.	1.2	3
34	A Rapid Screening Assay Identifies Monotherapy with Interferon-ß and Combination Therapies with Nucleoside Analogs as Effective Inhibitors of Ebola Virus. PLoS Neglected Tropical Diseases, 2016, 10, e0004364.	3.0	48
35	Central Role of ULK1 in Type I Interferon Signaling. Cell Reports, 2015, 11, 605-617.	6.4	66
36	Sex-based differences in immune function and responses to vaccination. Transactions of the Royal Society of Tropical Medicine and Hygiene, 2015, 109, 9-15.	1.8	425

#	Article	IF	CITATIONS
37	Sex Differences in the Immune Response. , 2015, , 1-29.		4
38	Critical Roles for Rictor/Sin1 Complexes in Interferon-dependent Gene Transcription and Generation of Antiproliferative Responses. Journal of Biological Chemistry, 2014, 289, 6581-6591.	3.4	19
39	Regulatory effects of SKAR in interferon α signaling and its role in the generation of type I IFN responses. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 11377-11382.	7.1	11
40	Immunoregulatory Effects of Interferon-Î ² in Suppression of Th17 cells. Journal of Interferon and Cytokine Research, 2014, 34, 330-341.	1.2	10
41	Interferon Receptor Signaling in Malignancy: A Network of Cellular Pathways Defining Biological Outcomes. Molecular Cancer Research, 2014, 12, 1691-1703.	3.4	77
42	Small molecule mimetics of an interferon- $\hat{l}\pm$ receptor interacting domain. Bioorganic and Medicinal Chemistry, 2014, 22, 978-985.	3.0	4
43	The role of circulating fibrocytes in inflammation and autoimmunity. Journal of Leukocyte Biology, 2013, 93, 45-50.	3.3	48
44	LAPCs promote follicular helper T cell differentiation of Ag-primed CD4+ T cells during respiratory virus infection. Journal of Experimental Medicine, 2012, 209, 1853-1867.	8.5	26
45	Regulatory effects of mTORC2 complexes in type I IFN signaling and in the generation of IFN responses. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 7723-7728.	7.1	46
46	The Chemokine CCL5 Regulates Glucose Uptake and AMP Kinase Signaling in Activated T Cells to Facilitate Chemotaxis. Journal of Biological Chemistry, 2012, 287, 29406-29416.	3.4	63
47	Circulating fibrocytes contribute to the pathogenesis of collagen antibody–induced arthritis. Arthritis and Rheumatism, 2012, 64, 3583-3593.	6.7	42
48	The yin and yang of viruses and interferons. Trends in Immunology, 2012, 33, 190-197.	6.8	98
49	Sex affects immunity. Journal of Autoimmunity, 2012, 38, J282-J291.	6.5	339
50	WFDC1/ps20: A host factor that influences the neutrophil response to murine hepatitis virus (MHV) 1 infection. Antiviral Research, 2012, 96, 158-168.	4.1	7
51	Activated Fibrocytes in Rheumatoid Arthritis. , 2011, , 253-270.		Ο
52	Interferon-β modulates type 1 immunity during influenza virus infection. Antiviral Research, 2010, 88, 64-71.	4.1	26
53	Fibrocyte activation in rheumatoid arthritis. Rheumatology, 2010, 49, 640-651.	1.9	57
54	Identification of a novel antigen-presenting cell population modulating antiinfluenza type 2 immunity. Journal of Experimental Medicine, 2010, 207, 1435-1451.	8.5	30

#	Article	IF	CITATIONS
55	Influenza Virus Non-Structural Protein 1 (NS1) Disrupts Interferon Signaling. PLoS ONE, 2010, 5, e13927.	2.5	140
56	Multiparameter Phospho-Flow Analysis of Lymphocytes in Early Rheumatoid Arthritis: Implications for Diagnosis and Monitoring Drug Therapy. PLoS ONE, 2009, 4, e6703.	2.5	41
57	CCL5 promotes proliferation of MCF-7 cells through mTOR-dependent mRNA translation. Biochemical and Biophysical Research Communications, 2009, 387, 381-386.	2.1	69
58	Dynamic accumulation of plasmacytoid dendritic cells in lymph nodes is regulated by interferon-β. Blood, 2009, 114, 2623-2631.	1.4	37
59	The X-files in immunity: sex-based differences predispose immune responses. Nature Reviews Immunology, 2008, 8, 737-744.	22.7	883
60	De Novo Design of Nonpeptidic Compounds Targeting the Interactions between Interferon-α and its Cognate Cell Surface Receptor. Journal of Medicinal Chemistry, 2008, 51, 2734-2743.	6.4	10
61	Role of the Akt pathway in mRNA translation of interferon-stimulated genes. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105, 4808-4813.	7.1	183
62	CCL5-mediated T-cell chemotaxis involves the initiation of mRNA translation through mTOR/4E-BP1. Blood, 2008, 111, 4892-4901.	1.4	84
63	Distinct Signature Type I Interferon Responses are Determined by the Infecting virus and the Target Cell. Antiviral Therapy, 2008, 13, 409-422.	1.0	31
64	A structural basis for interferonâ€Î±â€receptor interactions. FASEB Journal, 2007, 21, 3288-3296.	0.5	36
65	CCL5-CCR5-mediated Apoptosis in T Cells. Journal of Biological Chemistry, 2006, 281, 25184-25194.	3.4	61
66	Contribution of Interferon-β to the Murine Macrophage Response to the Toll-like Receptor 4 Agonist, Lipopolysaccharide. Journal of Biological Chemistry, 2006, 281, 31119-31130.	3.4	139
67	Chemokines and Cancer. , 2005, 126, 15-44.		14
68	Chemokines: attractive mediators of the immune response. Seminars in Immunology, 2003, 15, 5-14.	5.6	235
69	Critical roles for IFN-Â in lymphoid development, myelopoiesis, and tumor development: Links to tumor necrosis factor Â. Proceedings of the National Academy of Sciences of the United States of America, 2003, 100, 13453-13458.	7.1	65
70	Interferon Alfacon-1 Plus Corticosteroids in Severe Acute Respiratory Syndrome. JAMA - Journal of the American Medical Association, 2003, 290, 3222.	7.4	360
71	Review: IFN- <i>α</i> / <i>β</i> Receptor Interactions to Biologic Outcomes: Understanding the Circuitry. Journal of Interferon and Cytokine Research, 2002, 22, 835-845.	1.2	174
72	The Interferon-Inducible Stat2:Stat1 Heterodimer Preferentially Binds <i>In Vitro</i> to a Consensus Element Found in the Promoters of a Subset of Interferon-Stimulated Genes. Journal of Interferon and Cytokine Research, 2001, 21, 379-388.	1.2	55

#	Article	IF	CITATIONS
73	Engagement of the CrkL adaptor in interferon $\hat{I}\pm$ signalling in BCR-ABL-expressing cells. British Journal of Haematology, 2001, 112, 327-336.	2.5	35
74	RANTES Activates Jak2 and Jak3 to Regulate Engagement of Multiple Signaling Pathways in T Cells. Journal of Biological Chemistry, 2001, 276, 11427-11431.	3.4	98
75	Activation of the p38 Mitogen-activated Protein Kinase by Type I Interferons. Journal of Biological Chemistry, 1999, 274, 30127-30131.	3.4	211