
Ritesh Agarwal

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3012619/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Single-nanowire electrically driven lasers. Nature, 2003, 421, 241-245.	27.8	2,344
2	Tunable Metasurface and Flat Optical Zoom Lens on a Stretchable Substrate. Nano Letters, 2016, 16, 2818-2823.	9.1	475
3	Nanoscale avalanche photodiodes for highly sensitive and spatially resolved photon detection. Nature Materials, 2006, 5, 352-356.	27.5	397
4	Highly scalable non-volatile and ultra-low-power phase-change nanowire memory. Nature Nanotechnology, 2007, 2, 626-630.	31.5	389
5	Lasing in Single Cadmium Sulfide Nanowire Optical Cavities. Nano Letters, 2005, 5, 917-920.	9.1	342
6	Strong Exciton–Plasmon Coupling in MoS ₂ Coupled with Plasmonic Lattice. Nano Letters, 2016, 16, 1262-1269.	9.1	331
7	Semiconductor nanowire devices. Nano Today, 2008, 3, 12-22.	11.9	277
8	Manipulation and assembly of nanowires with holographic optical traps. Optics Express, 2005, 13, 8906.	3.4	267
9	Semiconductor nanowires: optics and optoelectronics. Applied Physics A: Materials Science and Processing, 2006, 85, 209-215.	2.3	266
10	Seeded growth of highly crystalline molybdenum disulphide monolayers at controlled locations. Nature Communications, 2015, 6, 6128.	12.8	259
11	Fano Resonance and Spectrally Modified Photoluminescence Enhancement in Monolayer MoS ₂ Integrated with Plasmonic Nanoantenna Array. Nano Letters, 2015, 15, 3646-3653.	9.1	246
12	All-optical active switching in individual semiconductor nanowires. Nature Nanotechnology, 2012, 7, 640-645.	31.5	241
13	Strain Multiplexed Metasurface Holograms on a Stretchable Substrate. Nano Letters, 2017, 17, 3641-3645.	9.1	216
14	Tunable topological charge vortex microlaser. Science, 2020, 368, 760-763.	12.6	180
15	Strain-engineered high-responsivity MoTe2 photodetector for silicon photonic integrated circuits. Nature Photonics, 2020, 14, 578-584.	31.4	172
16	On-the-fly closed-loop materials discovery via Bayesian active learning. Nature Communications, 2020, 11, 5966.	12.8	167
17	Synthesis and Structural Characterization of Single-Crystalline Branched Nanowire Heterostructures. Nano Letters, 2007, 7, 264-268.	9.1	165
18	Electrical Wind Force–Driven and Dislocation-Templated Amorphization in Phase-Change Nanowires. Science, 2012, 336, 1561-1566.	12.6	162

#	Article	IF	CITATIONS
19	Mixed-Mode Operation of Hybrid Phase-Change Nanophotonic Circuits. Nano Letters, 2017, 17, 150-155.	9.1	148
20	Tailoring hot-exciton emission and lifetimes in semiconducting nanowires via whispering-gallery nanocavity plasmons. Nature Materials, 2011, 10, 669-675.	27.5	140
21	Silicon coupled with plasmon nanocavities generates bright visible hot luminescence. Nature Photonics, 2013, 7, 285-289.	31.4	122
22	Heterointerfaces in Semiconductor Nanowires. Small, 2008, 4, 1872-1893.	10.0	120
23	Electrical Tuning of Exciton–Plasmon Polariton Coupling in Monolayer MoS ₂ Integrated with Plasmonic Nanoantenna Lattice. Nano Letters, 2017, 17, 4541-4547.	9.1	117
24	Size-dependent phase transition memory switching behavior and low writing currents in GeTe nanowires. Applied Physics Letters, 2006, 89, 223116.	3.3	116
25	Photocurrent detection of the orbital angular momentum of light. Science, 2020, 368, 763-767.	12.6	113
26	Synthesis and Characterization of Ge2Sb2Te5Nanowires with Memory Switching Effect. Journal of the American Chemical Society, 2006, 128, 14026-14027.	13.7	111
27	Ultrafast Energy Transfer in LHC-II Revealed by Three-Pulse Photon Echo Peak Shift Measurements. Journal of Physical Chemistry B, 2000, 104, 2908-2918.	2.6	109
28	Coreâ^'Shell Heterostructured Phase Change Nanowire Multistate Memory. Nano Letters, 2008, 8, 2056-2062.	9.1	103
29	Spatially dispersive circular photogalvanic effect in a Weyl semimetal. Nature Materials, 2019, 18, 955-962.	27.5	99
30	Generation of helical topological exciton-polaritons. Science, 2020, 370, 600-604.	12.6	97
31	Extremely low drift of resistance and threshold voltage in amorphous phase change nanowire devices. Applied Physics Letters, 2010, 96, .	3.3	91
32	One-dimensional polaritons with size-tunable and enhanced coupling strengths in semiconductor nanowires. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 10050-10055.	7.1	84
33	Three-Pulse Photon Echo Measurements on the Accessory Pigments in the Reaction Center of Rhodobacter sphaeroides. Journal of Physical Chemistry B, 1998, 102, 5923-5931.	2.6	83
34	Nanowire Transformation by Size-Dependent Cation Exchange Reactions. Nano Letters, 2010, 10, 149-155.	9.1	74
35	Voltage-tunable circular photogalvanic effect in silicon nanowires. Science, 2015, 349, 726-729.	12.6	73
36	Observing Oxygen Vacancy Driven Electroforming in Pt–TiO ₂ –Pt Device via Strong Metal Support Interaction. Nano Letters, 2016, 16, 2139-2144.	9.1	73

#	Article	IF	CITATIONS
37	Size-Dependent Surface-Induced Heterogeneous Nucleation Driven Phase-Change in Ge2Sb2Te5 Nanowires. Nano Letters, 2008, 8, 3303-3309.	9.1	72
38	Enhanced second-harmonic generation from metal-integrated semiconductor nanowires via highly confined whispering gallery modes. Nature Communications, 2014, 5, 5432.	12.8	72
39	Optomechanical Enhancement of Doubly Resonant 2D Optical Nonlinearity. Nano Letters, 2016, 16, 1631-1636.	9.1	71
40	Size-Dependent Waveguide Dispersion in Nanowire Optical Cavities: Slowed Light and Dispersionless Guiding. Nano Letters, 2009, 9, 1684-1688.	9.1	63
41	The mechanism of energy transfer in the antenna of photosynthetic purple bacteria. Journal of Photochemistry and Photobiology A: Chemistry, 2001, 142, 107-119.	3.9	60
42	Direct Observation of Metal–Insulator Transition in Single-Crystalline Germanium Telluride Nanowire Memory Devices Prior to Amorphization. Nano Letters, 2014, 14, 2201-2209.	9.1	59
43	Three Pulse Photon Echo Peak Shift Study of the B800 Band of the LH2 Complex of Rps. acidophila at Room Temperature:  A Coupled Master Equation and Nonlinear Optical Response Function Approach. Journal of Physical Chemistry B, 2001, 105, 1887-1894.	2.6	58
44	High-Resolution Transmission Electron Microscopy Study of Electrically-Driven Reversible Phase Change in Ge ₂ Sb ₂ Te ₅ Nanowires. Nano Letters, 2011, 11, 1364-1368.	9.1	58
45	Ultralow-power switching via defect engineering in germanium telluride phase-change memory devices. Nature Communications, 2016, 7, 10482.	12.8	57
46	Nature of Disorder and Inter-Complex Energy Transfer in LH2 at Room Temperature:  A Three Pulse Photon Echo Peak Shift Study. Journal of Physical Chemistry A, 2002, 106, 7573-7578.	2.5	55
47	Active material, optical mode and cavity impact on nanoscale electro-optic modulation performance. Nanophotonics, 2017, 7, 455-472.	6.0	55
48	Two-color three pulse photon echo peak shift spectroscopy. Journal of Chemical Physics, 2002, 116, 6243-6252.	3.0	54
49	Propagation Loss Spectroscopy on Single Nanowire Active Waveguides. Nano Letters, 2010, 10, 2251-2256.	9.1	53
50	Strain-Induced Large Exciton Energy Shifts in Buckled CdS Nanowires. Nano Letters, 2013, 13, 3836-3842.	9.1	53
51	Higher-dimensional supersymmetric microlaser arrays. Science, 2021, 372, 403-408.	12.6	51
52	Tailoring light–matter coupling in semiconductor and hybrid-plasmonic nanowires. Reports on Progress in Physics, 2014, 77, 086401.	20.1	50
53	Engineering Localized Surface Plasmon Interactions in Gold by Silicon Nanowire for Enhanced Heating and Photocatalysis. Nano Letters, 2017, 17, 1839-1845.	9.1	50
54	Incorporating polaritonic effects in semiconductor nanowire waveguide dispersion. Applied Physics Letters, 2010, 97, .	3.3	49

#	Article	IF	CITATIONS
55	Low threshold, single-mode laser based on individual CdS nanoribbons in dielectric DBR microcavity. Nano Energy, 2016, 30, 481-487.	16.0	46
56	Crystallographic Characterization of Il–VI Semiconducting Nanostructures via Optical Second Harmonic Generation. Nano Letters, 2015, 15, 7341-7346.	9.1	45
57	Room temperature polariton lasing in quantum heterostructure nanocavities. Science Advances, 2019, 5, eaau9338.	10.3	42
58	Z ₂ Photonic Topological Insulators in the Visible Wavelength Range for Robust Nanoscale Photonics. Nano Letters, 2020, 20, 1329-1335.	9.1	42
59	A deterministic guide for material and mode dependence of on-chip electro-optic modulator performance. Solid-State Electronics, 2017, 136, 92-101.	1.4	41
60	Phase-Change Geâ^'Sb Nanowires: Synthesis, Memory Switching, and Phase-Instability. Nano Letters, 2009, 9, 2103-2108.	9.1	37
61	Comparative study of memory-switching phenomena in phase change GeTe and Ge2Sb2Te5 nanowire devices. Physica E: Low-Dimensional Systems and Nanostructures, 2008, 40, 2474-2480.	2.7	36
62	Resolving Parity and Order of Fabry–Pérot Modes in Semiconductor Nanostructure Waveguides and Lasers: Young's Interference Experiment Revisited. Nano Letters, 2014, 14, 6564-6571.	9.1	34
63	Ultrasensitive, Mechanically Responsive Optical Metasurfaces <i>via</i> Strain Amplification. ACS Nano, 2018, 12, 10683-10692.	14.6	34
64	2D material printer: a deterministic cross contamination-free transfer method for atomically layered materials. 2D Materials, 2019, 6, 015006.	4.4	32
65	Loss and coupling tuning via heterogeneous integration of MoS2 layers in silicon photonics [Invited]. Optical Materials Express, 2019, 9, 751.	3.0	32
66	Understanding the Different Exciton–Plasmon Coupling Regimes in Two-Dimensional Semiconductors Coupled with Plasmonic Lattices: A Combined Experimental and Unified Equation of Motion Approach. ACS Photonics, 2018, 5, 192-204.	6.6	30
67	Inverting polar domains via electrical pulsing in metallic germanium telluride. Nature Communications, 2017, 8, 15033.	12.8	29
68	Epitaxial Growth and Ordering of GeTe Nanowires on Microcrystals Determined by Surface Energy Minimization. Nano Letters, 2009, 9, 2395-2401.	9.1	28
69	Variable Temperature Spectroscopy of As-Grown and Passivated CdS Nanowire Optical Waveguide Cavities. Journal of Physical Chemistry A, 2011, 115, 3827-3833.	2.5	28
70	Optically Controlled Orbitronics on a Triangular Lattice. Physical Review Letters, 2019, 123, 236403.	7.8	28
71	Uniform Bimetallic Nanocrystals by High-Temperature Seed-Mediated Colloidal Synthesis and Their Catalytic Properties for Semiconducting Nanowire Growth. Chemistry of Materials, 2015, 27, 5833-5838.	6.7	27
72	A semi-empirical integrated microring cavity approach for 2D material optical index identification at 1.55 μm. Nanophotonics, 2019, 8, 435-441.	6.0	27

#	Article	IF	CITATIONS
73	Study of photoconduction properties of CVD grown β-Ga2O3 nanowires. Journal of Alloys and Compounds, 2016, 683, 143-148.	5.5	26
74	Diameter-Controlled Synthesis of Phase-Change Germanium Telluride Nanowires via the Vaporâ^'Liquidâ ''Solid Mechanism. Journal of Physical Chemistry C, 2009, 113, 6898-6901.	3.1	25
75	Observation and Active Control of a Collective Polariton Mode and Polaritonic Band Gap in Few-Layer WS ₂ Strongly Coupled with Plasmonic Lattices. Nano Letters, 2020, 20, 790-798.	9.1	25
76	Mechanism of Extreme Optical Nonlinearities in Spiral WS ₂ above the Bandgap. Nano Letters, 2020, 20, 2667-2673.	9.1	25
77	Strong modulation of second-harmonic generation with very large contrast in semiconducting CdS via high-field domain. Nature Communications, 2018, 9, 186.	12.8	24
78	Size-dependent chemical transformation, structural phase change, and optical properties of nanowires. Philosophical Magazine, 2013, 93, 2089-2121.	1.6	23
79	Rectifying junctions of tin oxide and poly(3-hexylthiophene) nanofibers fabricated via electrospinning. Applied Physics Letters, 2009, 94, .	3.3	22
80	Phononâ€Assisted Electroâ€Optical Switches and Logic Gates Based on Semiconductor Nanostructures. Advanced Materials, 2019, 31, e1901263.	21.0	21
81	A Generic Approach for Embedded Catalyst-Supported Vertically Aligned Nanowire Growth. Nano Letters, 2008, 8, 1328-1334.	9.1	20
82	Enhancement of Interfacial Polymer Crystallinity Using Chromism in Single Inorganic Nanowire–Polymer Nanohybrids for Photovoltaic Applications. Nano Letters, 2011, 11, 3460-3467.	9.1	20
83	Coherent Interactions in One-Dimensional Topological Photonic Systems and Their Applications in All-Optical Logic Operation. Nano Letters, 2020, 20, 8796-8802.	9.1	20
84	Chalcogenide phase-change memory nanotubes for lower writing current operation. Nanotechnology, 2011, 22, 254012.	2.6	18
85	Studies of Hot Photoluminescence in Plasmonically Coupled Silicon via Variable Energy Excitation and Temperature-Dependent Spectroscopy. Nano Letters, 2014, 14, 5413-5422.	9.1	18
86	Nanocavity-Enhanced Giant Stimulated Raman Scattering in Si Nanowires in the Visible Light Region. Nano Letters, 2019, 19, 1204-1209.	9.1	17
87	Switching in Polaritonic–Photonic Crystal Nanofibers Doped with Quantum Dots. Nano Letters, 2011, 11, 5284-5289.	9.1	15
88	Real-Time Observation of Morphological Transformations in II–VI Semiconducting Nanobelts via Environmental Transmission Electron Microscopy. Nano Letters, 2015, 15, 3303-3308.	9.1	13
89	Low-Power Switching through Disorder and Carrier Localization in Bismuth-Doped Germanium Telluride Phase Change Memory Nanowires. ACS Nano, 2020, 14, 2162-2171.	14.6	13
90	Tailoring the Spectroscopic Properties of Semiconductor Nanowires via Surface-Plasmon-Based Optical Engineering. Journal of Physical Chemistry Letters, 2014, 5, 3768-3780.	4.6	12

#	Article	IF	CITATIONS
91	Nanotwin Detection and Domain Polarity Determination via Optical Second Harmonic Generation Polarimetry. Nano Letters, 2016, 16, 4404-4409.	9.1	12
92	Real-time nanomechanical property modulation as a framework for tunable NEMS. Nature Communications, 2022, 13, 1464.	12.8	12
93	Anion Exchange in Il–VI Semiconducting Nanostructures via Atomic Templating. Nano Letters, 2018, 18, 1620-1627.	9.1	11
94	The Effect of Solvatochromism on the Interfacial Morphology of P3HT-CdS Nanowire Nanohybrids. Nano Letters, 2013, 13, 3760-3765.	9.1	10
95	2D materials in electro-optic modulation: energy efficiency, electrostatics, mode overlap, material transfer and integration. Applied Physics A: Materials Science and Processing, 2018, 124, 1.	2.3	9
96	Tunable geometric photocurrent in van der Waals heterostructure. Optica, 2020, 7, 1204.	9.3	9
97	Electrically programmable multi-purpose nonvolatile metasurface based on phase change materials. Physica Scripta, 2019, 94, 025803.	2.5	8
98	Two Dimensional Electronic Spectroscopy. Bulletin of the Korean Chemical Society, 2003, 24, 1081-1090.	1.9	8
99	Self-aligned on-chip coupled photonic devices using individual cadmium sulfide nanobelts. Nano Research, 2020, 13, 1413-1418.	10.4	7
100	Emission energy, exciton dynamics and lasing properties of buckled CdS nanoribbons. Scientific Reports, 2016, 6, 26607.	3.3	6
101	Cavity Engineering of Photon–Phonon Interactions in Si Nanocavities. Nano Letters, 2019, 19, 7950-7956.	9.1	5
102	Implications of Active Material and Optical Mode on Nanoscale Electro-Optic Modulation. , 2017, , .		4
103	Exchange coupling–mediated broken symmetries in Ta ₂ NiSe ₅ revealed from quadrupolar circular photogalvanic effect. Science Advances, 2022, 8, eabl9020.	10.3	3
104	Two-color Transient Grating Spectroscopy of a Two-level System. Bulletin of the Korean Chemical Society, 2003, 24, 1069-1074.	1.9	2
105	Reply to 'Hot photoluminescence or Raman scattering?'. Nature Photonics, 2014, 8, 667-668.	31.4	1
106	Obtaining bright visible light emission from "Bulk―silicon by nanocavity plasmons. , 2013, , .		0
107	Plasmon excitation of coherent interface phonons in Si-SiO <inf>2</inf> systems. , 2014, , .		Ο
108	Tailoring Light-Matter Interactions in Semiconductor Nanowires with Nanocavity Plasmons. , 2014, , .		0

#	Article	IF	CITATIONS
109	Electromechanically reconfigurable CdS nanoplate based nonlinear optical device. Optics Express, 2016, 24, 13459.	3.4	0
110	Novel Classical and Quantum Photonic Devices by Manipulating Light-matter Interactions in One and Two-Dimensional Systems. , 2017, , .		0
111	Vortex microlaser with ultrafast tunability. , 2021, , .		0
112	Two-Color Three Pulse Photon Echo Peak Shift Spectroscopy. Springer Series in Chemical Physics, 2003, , 532-534.	0.2	0
113	Voltage tunable dual wavelength light source via optomechanically controlled CdS nanoplates. , 2017, , .		0
114	Supersymmetric Microlaser Arrays in Two Dimensions and Beyond. , 2021, , .		0