List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/301232/publications.pdf Version: 2024-02-01

#	Article	lF	CITATIONS
1	Mutations in DNAH1, which Encodes an Inner Arm Heavy Chain Dynein, Lead to Male Infertility from Multiple Morphological Abnormalities of the Sperm Flagella. American Journal of Human Genetics, 2014, 94, 95-104.	6.2	328
2	Mutations in CFAP43 and CFAP44 cause male infertility and flagellum defects in Trypanosoma and human. Nature Communications, 2018, 9, 686.	12.8	173
3	Loss-of-Function Mutations in LRRC6 , a Gene Essential for Proper Axonemal Assembly of Inner and Outer Dynein Arms, Cause Primary Ciliary Dyskinesia. American Journal of Human Genetics, 2012, 91, 958-964.	6.2	165
4	MgcRacGAP, A New Human GTPase-activating Protein for Rac and Cdc42 Similar to Drosophila rotundRacGAP Gene Product, Is Expressed in Male Germ Cells. Journal of Biological Chemistry, 1998, 273, 6019-6023.	3.4	144
5	The genetic architecture of morphological abnormalities of the sperm tail. Human Genetics, 2021, 140, 21-42.	3.8	130
6	Genetic abnormalities leading to qualitative defects of sperm morphology or function. Clinical Genetics, 2017, 91, 217-232.	2.0	127
7	Absence of CFAP69 Causes Male Infertility due to Multiple Morphological Abnormalities of the Flagella in Human and Mouse. American Journal of Human Genetics, 2018, 102, 636-648.	6.2	121
8	Mutations in DNAH17, Encoding a Sperm-Specific Axonemal Outer Dynein Arm Heavy Chain, Cause Isolated Male Infertility Due to Asthenozoospermia. American Journal of Human Genetics, 2019, 105, 198-212.	6.2	116
9	Bi-allelic Mutations in ARMC2 Lead to Severe Astheno-Teratozoospermia Due to Sperm Flagellum Malformations in Humans and Mice. American Journal of Human Genetics, 2019, 104, 331-340.	6.2	113
10	Bi-allelic DNAH8 Variants Lead to Multiple Morphological Abnormalities of the Sperm Flagella and Primary Male Infertility. American Journal of Human Genetics, 2020, 107, 330-341.	6.2	111
11	The Testis Anion Transporter 1 (Slc26a8) is required for sperm terminal differentiation and male fertility in the mouse. Human Molecular Genetics, 2007, 16, 1783-1793.	2.9	95
12	Homozygous missense mutation L673P in adenylate kinase 7 (AK7) leads to primary male infertility and multiple morphological anomalies of the flagella but not to primary ciliary dyskinesia. Human Molecular Genetics, 2018, 27, 1196-1211.	2.9	95
13	A New Deletion of the Mouse Y Chromosome Long Arm Associated With the Loss of Ssty Expression, Abnormal Sperm Development and Sterility. Genetics, 2004, 166, 901-912.	2.9	93
14	Whole-exome sequencing identifies mutations in FSIP2 as a recurrent cause of multiple morphological abnormalities of the sperm flagella. Human Reproduction, 2018, 33, 1973-1984.	0.9	93
15	Missense Mutations in SLC26A8, Encoding a Sperm-Specific Activator of CFTR, Are Associated with Human Asthenozoospermia. American Journal of Human Genetics, 2013, 92, 760-766.	6.2	92
16	Deletions on mouse Yq lead to upregulation of multiple X- and Y-linked transcripts in spermatids. Human Molecular Genetics, 2005, 14, 2705-2715.	2.9	91
17	Identification of novel Y chromosome encoded transcripts by testis transcriptome analysis of mice with deletions of the Y chromosome long arm. Genome Biology, 2005, 6, R102.	8.8	85
18	Tat1, a Novel Sulfate Transporter Specifically Expressed in Human Male Germ Cells and Potentially Linked to RhoGTPase Signaling. Journal of Biological Chemistry, 2001, 276, 20309-20315.	3.4	84

#	Article	IF	CITATIONS
19	Mutations in DNAJB13 , Encoding an HSP40 Family Member, Cause Primary Ciliary Dyskinesia and Male Infertility. American Journal of Human Genetics, 2016, 99, 489-500.	6.2	84
20	Tubulin glycylation controls axonemal dynein activity, flagellar beat, and male fertility. Science, 2021, 371, .	12.6	84
21	A Homozygous Ancestral SVA-Insertion-Mediated Deletion in WDR66 Induces Multiple Morphological Abnormalities of the Sperm Flagellum and Male Infertility. American Journal of Human Genetics, 2018, 103, 400-412.	6.2	81
22	Inactivation of AMPKα1 Induces Asthenozoospermia and Alters Spermatozoa Morphology. Endocrinology, 2012, 153, 3468-3481.	2.8	78
23	Deleterious variants in X-linked CFAP47 induce asthenoteratozoospermia and primary male infertility. American Journal of Human Genetics, 2021, 108, 309-323.	6.2	74
24	The testis anion transporter TAT1 (SLC26A8) physically and functionally interacts with the cystic fibrosis transmembrane conductance regulator channel: a potential role during sperm capacitation. Human Molecular Genetics, 2012, 21, 1287-1298.	2.9	70
25	Absence of annulus in human asthenozoospermia: Case Reportâ€. Human Reproduction, 2009, 24, 1296-1303.	0.9	67
26	Functional interaction of the cystic fibrosis transmembrane conductance regulator with members of the SLC26 family of anion transporters (SLC26A8 and SLC26A9): Physiological and pathophysiological relevance. International Journal of Biochemistry and Cell Biology, 2014, 52, 58-67.	2.8	63
27	Expression Analysis of the Mouse Multi-Copy X-Linked Gene Xlr-Related, Meiosis-Regulated (Xmr), Reveals That Xmr Encodes a Spermatid-Expressed Cytoplasmic Protein, SLX/XMR1. Biology of Reproduction, 2007, 77, 329-335.	2.7	51
28	Septins at the annulus of mammalian sperm. Biological Chemistry, 2011, 392, 799-803.	2.5	47
29	A protein encoded by a member of the multicopy Ssty gene family located on the long arm of the mouse Y chromosome is expressed during sperm development. Genomics, 2004, 83, 140-147.	2.9	46
30	TTC12 Loss-of-Function Mutations Cause Primary Ciliary Dyskinesia and Unveil Distinct Dynein Assembly Mechanisms in Motile Cilia Versus Flagella. American Journal of Human Genetics, 2020, 106, 153-169.	6.2	46
31	Mutations in TTC29, Encoding an Evolutionarily Conserved Axonemal Protein, Result in Asthenozoospermia and Male Infertility. American Journal of Human Genetics, 2019, 105, 1148-1167.	6.2	44
32	Single gene defects leading to sperm quantitative anomalies. Clinical Genetics, 2017, 91, 208-216.	2.0	43
33	CFAP70 mutations lead to male infertility due to severe astheno-teratozoospermia. A case report. Human Reproduction, 2019, 34, 2071-2079.	0.9	43
34	Genetic causes of male infertility: snapshot on morphological abnormalities of the sperm flagellum. Basic and Clinical Andrology, 2019, 29, 2.	1.9	43
35	Biallelic variants in <i>MAATS1</i> encoding CFAP91, a calmodulin-associated and spoke-associated complex protein, cause severe astheno-teratozoospermia and male infertility. Journal of Medical Genetics, 2020, 57, 708-716.	3.2	43
36	Rho family GTPase Rnd2 interacts and co-localizes with MgcRacGAP in male germ cells. Biochemical Journal, 2003, 372, 105-112.	3.7	35

#	Article	IF	CITATIONS
37	<scp>SSTY</scp> proteins coâ€localize with the postâ€meiotic sex chromatin and interact with regulators of its expression. FEBS Journal, 2014, 281, 1571-1584.	4.7	34
38	Phosphoregulation of MgcRacGAP in mitosis involves Aurora B and Cdk1 protein kinases and the PP2A phosphatase. FEBS Letters, 2008, 582, 1182-1188.	2.8	33
39	Male Infertility: Genetics, Mechanism, and Therapies. BioMed Research International, 2016, 2016, 1-1.	1.9	33
40	Genetics of teratozoospermia: Back to the head. Best Practice and Research in Clinical Endocrinology and Metabolism, 2020, 34, 101473.	4.7	32
41	Whole exome sequencing of men with multiple morphological abnormalities of the sperm flagella reveals novel homozygous <i>QRICH2</i> mutations. Clinical Genetics, 2019, 96, 394-401.	2.0	30
42	Importance of SLC26 Transmembrane Anion Exchangers in Sperm Post-testicular Maturation and Fertilization Potential. Frontiers in Cell and Developmental Biology, 2019, 7, 230.	3.7	28
43	The sodium/proton exchanger <scp>SLC9C1</scp> (<scp>sNHE</scp>) is essential for human sperm motility and fertility. Clinical Genetics, 2021, 99, 684-693.	2.0	26
44	Bi-allelic truncating variants in CFAP206 cause male infertility in human and mouse. Human Genetics, 2021, 140, 1367-1377.	3.8	23
45	In-vitro effects of Thymus munbyanus essential oil and thymol on human sperm motility and function. Reproductive BioMedicine Online, 2015, 31, 411-420.	2.4	22
46	Slc26a3 deficiency is associated with epididymis dysplasia and impaired sperm fertilization potential in the mouse. Molecular Reproduction and Development, 2018, 85, 682-695.	2.0	21
47	A missense mutation in IFT74, encoding for an essential component for intraflagellar transport of Tubulin, causes asthenozoospermia and male infertility without clinical signs of Bardet–Biedl syndrome. Human Genetics, 2021, 140, 1031-1043.	3.8	20
48	A New Deletion of the Mouse Y Chromosome Long Arm Associated With the Loss of <i>Ssty</i> Expression, Abnormal Sperm Development and Sterility. Genetics, 2004, 166, 901-912.	2.9	18
49	Structure and expression of murine mgcRacGAP: its developmental regulation suggests a role for the Rac/MgcRacGAP signalling pathway in neurogenesis. Biochemical Journal, 1999, 343, 225-230.	3.7	15
50	Does <i>Rbmy</i> have a role in sperm development in mice?. Cytogenetic and Genome Research, 2003, 103, 330-336.	1.1	15
51	Deletion of MgcRacGAP in the male germ cells impairs spermatogenesis and causes male sterility in the mouse. Developmental Biology, 2014, 386, 419-427.	2.0	14
52	Genomic duplication in the 19q13.42 imprinted region identified as a new genetic cause of intrauterine growth restriction. Clinical Genetics, 2018, 94, 575-580.	2.0	12
53	Genetic diagnosis, sperm phenotype and ICSI outcome in case of severe asthenozoospermia with multiple morphological abnormalities of the flagellum. Human Reproduction, 2021, 36, 2848-2860.	0.9	12
54	Sperm Ion Transporters and Channels in Human Asthenozoospermia: Genetic Etiology, Lessons from Animal Models, and Clinical Perspectives. International Journal of Molecular Sciences, 2022, 23, 3926.	4.1	11

#	Article	IF	CITATIONS
55	Assessment of the frequency of sperm annulus defects in a large cohort of patients presenting asthenozoospermia. Basic and Clinical Andrology, 2015, 25, 10.	1.9	10
56	Structure and expression of murine mgcRacGAP: its developmental regulation suggests a role for the Rac/MgcRacGAP signalling pathway in neurogenesis. Biochemical Journal, 1999, 343, 225.	3.7	7
57	Spermatozoa and Plasmodium zoites: the same way to invade oocyte and host cells?. Microbes and Infection, 2012, 14, 874-879.	1.9	5
58	Identification and Characterization of the Most Common Genetic Variant Responsible for Acephalic Spermatozoa Syndrome in Men Originating from North Africa. International Journal of Molecular Sciences, 2021, 22, 2187.	4.1	5
59	Genetics and Pathophysiology of the Cystic Fibrosis Transmembrane Conductance Regulator in Male Reproduction: New Evidence of a Direct Effect on the Male Germline. Monographs in Human Genetics, 2017, , 74-85.	0.5	3
60	Corrigendum to "Phosphoregulation of MgcRacGAP in mitosis involves Aurora B and Cdk1 protein kinases and the PP2A phosphatase―[FEBS Lett. 582 (2008) 1182-1188]. FEBS Letters, 2008, 582, 1635-1635.	2.8	0
61	Study of the Anion Transporter TAT1 (SLC26A8) in the Etiology of Human Asthenozoospermia Biology of Reproduction, 2008, 78, 195-196.	2.7	0