Christopher L Netherton

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3011337/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	African swine fever virus replication and genomics. Virus Research, 2013, 173, 3-14.	2.2	460
2	A Guide to Viral Inclusions, Membrane Rearrangements, Factories, and Viroplasm Produced During Virus Replication. Advances in Virus Research, 2007, 70, 101-182.	2.1	189
3	Protection of European domestic pigs from virulent African isolates of African swine fever virus by experimental immunisation. Vaccine, 2011, 29, 4593-4600.	3.8	185
4	Virus factories, double membrane vesicles and viroplasm generated in animal cells. Current Opinion in Virology, 2011, 1, 381-387.	5.4	163
5	Dynamics of African swine fever virus shedding and excretion in domestic pigs infected by intramuscular inoculation and contact transmission. Veterinary Research, 2014, 45, 93.	3.0	150
6	Deletion of African swine fever virus interferon inhibitors from the genome of a virulent isolate reduces virulence in domestic pigs and induces a protective response. Vaccine, 2016, 34, 4698-4705.	3.8	141
7	Cellular immunity in ASFV responses. Virus Research, 2013, 173, 110-121.	2.2	120
8	Rapid freeze-substitution preserves membranes in high-pressure frozen tissue culture cells. Journal of Microscopy, 2007, 226, 182-189.	1.8	103
9	Deletion of the African Swine Fever Virus Gene DP148R Does Not Reduce Virus Replication in Culture but Reduces Virus Virulence in Pigs and Induces High Levels of Protection against Challenge. Journal of Virology, 2017, 91, .	3.4	103
10	Sensitivity of African swine fever virus to type I interferon is linked to genes within multigene families 360 and 505. Virology, 2016, 493, 154-161.	2.4	101
11	Survival of African Swine Fever Virus in Excretions from Pigs Experimentally Infected with the Georgia 2007/1 Isolate. Transboundary and Emerging Diseases, 2017, 64, 425-431.	3.0	97
12	Foot-and-Mouth Disease Virus Induces Autophagosomes during Cell Entry via a Class III Phosphatidylinositol 3-Kinase-Independent Pathway. Journal of Virology, 2012, 86, 12940-12953.	3.4	93
13	Identification and Immunogenicity of African Swine Fever Virus Antigens. Frontiers in Immunology, 2019, 10, 1318.	4.8	87
14	Inhibition of a Large Double-Stranded DNA Virus by MxA Protein. Journal of Virology, 2009, 83, 2310-2320.	3.4	75
15	Different routes and doses influence protection in pigs immunised with the naturally attenuated African swine fever virus isolate OURT88/3. Antiviral Research, 2017, 138, 1-8.	4.1	75
16	Immunization of Pigs by DNA Prime and Recombinant Vaccinia Virus Boost To Identify and Rank African Swine Fever Virus Immunogenic and Protective Proteins. Journal of Virology, 2018, 92, .	3.4	75
17	A Pool of Eight Virally Vectored African Swine Fever Antigens Protect Pigs against Fatal Disease. Vaccines, 2020, 8, 234.	4.4	66
18	Deletion of virulence associated genes from attenuated African swine fever virus isolate OUR T88/3 decreases its ability to protect against challenge with virulent virus. Virology, 2013, 443, 99-105.	2.4	62

#	Article	IF	CITATIONS
19	Unraveling the Armor of a Killer: Evasion of Host Defenses by African Swine Fever Virus. Journal of Virology, 2017, 91, .	3.4	62
20	The Genetics of Life and Death: Virus-Host Interactions Underpinning Resistance to African Swine Fever, a Viral Hemorrhagic Disease. Frontiers in Genetics, 2019, 10, 402.	2.3	62
21	African Swine Fever Virus Inhibits Induction of the Stress-Induced Proapoptotic Transcription Factor CHOP/GADD153. Journal of Virology, 2004, 78, 10825-10828.	3.4	47
22	African swine fever virus organelle rearrangements. Virus Research, 2013, 173, 76-86.	2.2	42
23	The Subcellular Distribution of Multigene Family 110 Proteins of African Swine Fever Virus Is Determined by Differences in C-Terminal KDEL Endoplasmic Reticulum Retention Motifs. Journal of Virology, 2004, 78, 3710-3721.	3.4	41
24	A Deep-Sequencing Workflow for the Fast and Efficient Generation of High-Quality African Swine Fever Virus Whole-Genome Sequences. Viruses, 2019, 11, 846.	3.3	41
25	The Envelope of Intracellular African Swine Fever Virus Is Composed of a Single Lipid Bilayer. Journal of Virology, 2008, 82, 7905-7912.	3.4	31
26	Crystal Structure of African Swine Fever Virus A179L with the Autophagy Regulator Beclin. Viruses, 2019, 11, 789.	3.3	31
27	African Swine Fever Virus Strain Georgia 2007/1 inOrnithodoros erraticusTicks. Emerging Infectious Diseases, 2012, 18, 1026-1028.	4.3	28
28	Identification of residues within the African swine fever virus DP71L protein required for dephosphorylation of translation initiation factor eIF21̂± and inhibiting activation of pro-apoptotic CHOP. Virology, 2017, 504, 107-113.	2.4	24
29	African Swine Fever Virus Causes Microtubule-Dependent Dispersal of thetrans-Golgi Network and Slows Delivery of Membrane Protein to the PlasmaMembrane. Journal of Virology, 2006, 80, 11385-11392.	3.4	21
30	Adaptive Cellular Immunity against African Swine Fever Virus Infections. Pathogens, 2022, 11, 274.	2.8	21
31	Unpicking the Secrets of African Swine Fever Viral Replication Sites. Viruses, 2021, 13, 77.	3.3	15
32	Autophagy impairment by African swine fever virus. Journal of General Virology, 2021, 102, .	2.9	10
33	Identification of a Functional Small Noncoding RNA of African Swine Fever Virus. Journal of Virology, 2020, 94, .	3.4	9
34	Identification of novel testing matrices for African swine fever surveillance. Journal of Veterinary Diagnostic Investigation, 2020, 32, 961-963.	1.1	8
35	Novel method for subâ€grouping of genotype II African swine fever viruses based on the intergenic region between the A179L and A137R genes. Veterinary Medicine and Science, 2022, 8, 607-609.	1.6	8
36	Cellular and Humoral Immune Responses after Immunisation with Low Virulent African Swine Fever Virus in the Large White Inbred Babraham Line and Outbred Domestic Pigs. Viruses, 2022, 14, 1487.	3.3	7

#	Article	IF	CITATIONS
37	Identification and Characterization of a Novel Epitope of ASFV-Encoded dUTPase by Monoclonal Antibodies. Viruses, 2021, 13, 2175.	3.3	6
38	Prospects for Development of African Swine Fever Virus Vaccines. Developments in Biologicals, 2013, 135, 147-157.	0.5	5
39	Primary Macrophage Culture from Porcine Blood and Lungs. Methods in Molecular Biology, 2022, 2503, 63-72.	0.9	1
40	African Swine Fever Virus (Asfarviridae). , 2021, , 22-33.		0
41	Intracellular Infectiology: Infectious Agents – Virus Factories and Mini-Organelles Generated for Virus Replication. , 2022, , .		0
42	Purification of African Swine Fever Virus. Methods in Molecular Biology, 2022, 2503, 179-186.	0.9	0
43	Laboratory Diagnosis and Quantification of African Swine Fever Virus Using Real-Time Polymerase Chain Reaction, Methods in Molecular Biology, 2022, 2503, 95-104	0.9	0