
Ian G Mccarthy

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3011145/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	HSC-XXL: Baryon budget of the 136 XXL groups and clusters. Publication of the Astronomical Society of Japan, 2022, 74, 175-208.	1.0	17
2	Quenching of satellite galaxies of Milky Way analogues: reconciling theory and observations. Monthly Notices of the Royal Astronomical Society, 2022, 511, 1544-1556.	1.6	16
3	Constraining AGN feedback model with SZ profile. EPJ Web of Conferences, 2022, 257, 00045.	0.1	1
4	Intrinsic alignments of the extended radio continuum emission of galaxies in the EAGLE simulations. Monthly Notices of the Royal Astronomical Society, 2022, 511, 3844-3862.	1.6	2
5	High-resolution synthetic UV-submm images for Milky Way-mass simulated galaxies from the ARTEMIS project. Monthly Notices of the Royal Astronomical Society, 2022, 512, 2728-2749.	1.6	16
6	Galaxy velocity bias in cosmological simulations: towards per cent-level calibration. Monthly Notices of the Royal Astronomical Society, 2022, 510, 2980-2997.	1.6	12
7	Merger-induced galaxy transformations in the <scp>artemis</scp> simulations. Monthly Notices of the Royal Astronomical Society, 2022, 513, 1867-1886.	1.6	25
8	The morphology of star-forming gas and its alignment with galaxies and dark matter haloes in the EAGLE simulations. Monthly Notices of the Royal Astronomical Society, 2021, 505, 65-87.	1.6	5
9	Can cosmological simulations capture the diverse satellite populations of observed Milky Way analogues?. Monthly Notices of the Royal Astronomical Society, 2021, 505, 783-801.	1.6	30
10	Simulating Groups and the IntraGroup Medium: The Surprisingly Complex and Rich Middle Ground between Clusters and Galaxies. Universe, 2021, 7, 209.	0.9	46
11	The impact of self-interacting dark matter on the intrinsic alignments of galaxies. Monthly Notices of the Royal Astronomical Society, 2021, 506, 441-451.	1.6	5
12	The GOGREEN survey: dependence of galaxy properties on halo mass at <i>z</i> > 1 and implications for environmental quenching. Monthly Notices of the Royal Astronomical Society, 2021, 506, 3364-3384.	1.6	16
13	On the road to per cent accuracy – V. The non-linear power spectrum beyond ルCDM with massive neutrinos and baryonic feedback. Monthly Notices of the Royal Astronomical Society, 2021, 508, 2479-2491.	1.6	13
14	The BAHAMAS project: evaluating the accuracy of the halo model in predicting the non-linear matter power spectrum. Monthly Notices of the Royal Astronomical Society, 2021, 508, 3519-3534.	1.6	6
15	Towards a universal model for the density profiles of dark matter haloes. Monthly Notices of the Royal Astronomical Society, 2021, 509, 5685-5701.	1.6	5
16	Exploring the effects of galaxy formation on matter clustering through a library of simulation power spectra. Monthly Notices of the Royal Astronomical Society, 2020, 491, 2424-2446.	1.6	89
17	Exploring extensions to the standard cosmological model and the impact of baryons on small scales. Monthly Notices of the Royal Astronomical Society, 2020, 497, 3809-3829.	1.6	13
18	The imprint of dark subhaloes on the circumgalactic medium. Monthly Notices of the Royal Astronomical Society, 2020, 499, 3255-3266.	1.6	1

#	Article	IF	CITATIONS
19	Stellar property statistics of massive haloes from cosmological hydrodynamics simulations: common kernel shapes. Monthly Notices of the Royal Astronomical Society, 2020, 495, 686-704.	1.6	26
20	The <scp>artemis</scp> simulations: stellar haloes of Milky Way-mass galaxies. Monthly Notices of the Royal Astronomical Society, 2020, 498, 1765-1785.	1.6	60
21	The GOGREEN survey: the environmental dependence of the star-forming galaxy main sequence at 1.0 < <i>z</i> < 1.5. Monthly Notices of the Royal Astronomical Society, 2020, 493, 5987-6000.	1.6	43
22	Environment from cross-correlations: connecting hot gas and the quenching of galaxies. Monthly Notices of the Royal Astronomical Society, 2020, 496, 2241-2261.	1.6	7
23	The BAHAMAS project: effects of dynamical dark energy on large-scale structure. Monthly Notices of the Royal Astronomical Society, 2020, 498, 1576-1592.	1.6	10
24	The GOGREEN survey: post-infall environmental quenching fails to predict the observed age difference between quiescent field and cluster galaxies at <i>z</i> Â>Â1. Monthly Notices of the Royal Astronomical Society, 2020, 498, 5317-5342.	1.6	37
25	Weak lensing minima and peaks: Cosmological constraints and the impact of baryons. Monthly Notices of the Royal Astronomical Society, 2020, 495, 2531-2542.	1.6	25
26	Connecting the structure of dark matter haloes to the primordial power spectrum. Monthly Notices of the Royal Astronomical Society, 2020, 495, 4994-5013.	1.6	21
27	Probing hot gas around luminous red galaxies through the Sunyaev–Zel'dovich effect. Monthly Notices of the Royal Astronomical Society, 2020, 491, 2318-2329.	1.6	19
28	An analysis of galaxy cluster mis-centring using cosmological hydrodynamic simulations. Monthly Notices of the Royal Astronomical Society, 2020, 493, 1120-1129.	1.6	11
29	The bahamas project: effects of a running scalar spectral index on large-scale structure. Monthly Notices of the Royal Astronomical Society, 2020, 493, 676-697.	1.6	11
30	A hydrodynamical halo model for weak-lensing cross correlations. Astronomy and Astrophysics, 2020, 641, A130.	2.1	39
31	Imprint of baryons and massive neutrinos on velocity statistics. Astronomy and Astrophysics, 2020, 644, A170.	2.1	5
32	Informing dark matter direct detection limits with the ARTEMIS simulations. Journal of Cosmology and Astroparticle Physics, 2020, 2020, 016-016.	1.9	10
33	Reconciling galaxy cluster shapes, measured by theorists versus observers. Monthly Notices of the Royal Astronomical Society, 2020, 500, 2627-2644.	1.6	11
34	Is there enough star formation in simulated protoclusters?. Monthly Notices of the Royal Astronomical Society, 2020, 501, 1803-1822.	1.6	17
35	Weak-lensing Analysis of X-Ray-selected XXL Galaxy Groups and Clusters with Subaru HSC Data. Astrophysical Journal, 2020, 890, 148.	1.6	45
36	Galaxy cluster mass estimation with deep learning and hydrodynamical simulations. Monthly Notices of the Royal Astronomical Society, 2020, 499, 3445-3458.	1.6	21

#	Article	IF	CITATIONS
37	Observable tests of self-interacting dark matter in galaxy clusters: BCG wobbles in a constant density core. Monthly Notices of the Royal Astronomical Society, 2019, 488, 1572-1579.	1.6	57
38	Observable tests of self-interacting dark matter in galaxy clusters: cosmological simulations with SIDM and baryons. Monthly Notices of the Royal Astronomical Society, 2019, 488, 3646-3662.	1.6	72
39	The impact of baryonic physics and massive neutrinos on weak lensing peak statistics. Monthly Notices of the Royal Astronomical Society, 2019, 488, 3340-3357.	1.6	17
40	Painting with baryons: augmenting <i>N</i> -body simulations with gas using deep generative models. Monthly Notices of the Royal Astronomical Society: Letters, 2019, 487, L24-L29.	1.2	49
41	The gas fractions of dark matter haloes hosting simulated â^¼L⋆ galaxies are governed by the feedback history of their black holes. Monthly Notices of the Royal Astronomical Society, 2019, 485, 3783-3793.	1.6	66
42	The relationship between the morphology and kinematics of galaxies and its dependence on dark matter halo structure in EAGLE. Monthly Notices of the Royal Astronomical Society, 2019, 485, 972-987.	1.6	59
43	A search for warm/hot gas filaments between pairs of SDSS Luminous Red Galaxies. Monthly Notices of the Royal Astronomical Society, 2019, 483, 223-234.	1.6	90
44	Modelling baryonic feedback for survey cosmology. , 2019, 2, .		103
45	The BAHAMAS project: the CMB–large-scale structure tension and the roles of massive neutrinos and galaxy formation. Monthly Notices of the Royal Astronomical Society, 2018, 476, 2999-3030.	1.6	113
46	The XXL Survey. Astronomy and Astrophysics, 2018, 620, A4.	2.1	13
47	Multiwavelength scaling relations in galaxy groups: a detailed comparison of GAMA and KiDS observations to BAHAMAS simulations. Monthly Notices of the Royal Astronomical Society, 2018, 480, 3338-3355.	1.6	11
48	Localized massive halo properties in bahamas and MACSIS simulations: scalings, lognormality, and covariance. Monthly Notices of the Royal Astronomical Society, 2018, 478, 2618-2632.	1.6	40
49	The EAGLE simulations: atomic hydrogen associated with galaxies. Monthly Notices of the Royal Astronomical Society, 2017, 464, 4204-4226.	1.6	130
50	A detection of wobbling brightest cluster galaxies within massive galaxy clusters. Monthly Notices of the Royal Astronomical Society, 2017, 472, 1972-1980.	1.6	27
51	The Diversity of Assembly Histories Leading to Disc Galaxy Formation in a $\hat{ ho}$ CDM Model. Publications of the Astronomical Society of Australia, 2017, 34, .	1.3	15
52	nIFTy galaxy cluster simulations – V. Investigation of the cluster infall region. Monthly Notices of the Royal Astronomical Society, 2017, 464, 2027-2038.	1.6	16
53	Galaxy And Mass Assembly: search for a population of high-entropy galaxy groups. Monthly Notices of the Royal Astronomical Society, 2017, 469, 3489-3504.	1.6	17
54	Cross-correlating Planck tSZ with RCSLenS weak lensing: implications for cosmology and AGN feedback. Monthly Notices of the Royal Astronomical Society, 2017, 471, 1565-1580.	1.6	53

#	Article	IF	CITATIONS
55	The Hydrangea simulations: galaxy formation in and around massive clusters. Monthly Notices of the Royal Astronomical Society, 2017, 470, 4186-4208.	1.6	167
56	The separate and combined effects of baryon physics and neutrino free streaming on large-scale structure. Monthly Notices of the Royal Astronomical Society, 2017, 471, 227-242.	1.6	58
57	Predictions for the detection of tidal streams with Gaia using great-circle methods. Monthly Notices of the Royal Astronomical Society, 2017, 469, 721-743.	1.6	14
58	The bahamas project: calibrated hydrodynamical simulations for large-scale structure cosmology. Monthly Notices of the Royal Astronomical Society, 2017, 465, 2936-2965.	1.6	304
59	Hierarchical inference of the relationship between concentration and mass in galaxy groups and clusters. Monthly Notices of the Royal Astronomical Society, 2017, 468, 4872-4886.	1.6	16
60	The Cluster-EAGLE project: global properties of simulated clusters with resolved galaxies. Monthly Notices of the Royal Astronomical Society, 2017, 471, 1088-1106.	1.6	178
61	The redshift evolution of massive galaxy clusters in the MACSIS simulations. Monthly Notices of the Royal Astronomical Society, 2017, 465, 213-233.	1.6	96
62	The impact of baryons on massive galaxy clusters: halo structure and cluster mass estimates. Monthly Notices of the Royal Astronomical Society, 2017, 465, 3361-3378.	1.6	75
63	The origin of the enhanced metallicity of satellite galaxies. Monthly Notices of the Royal Astronomical Society, 2017, 464, 508-529.	1.6	36
64	The XXL Survey. Astronomy and Astrophysics, 2016, 592, A12.	2.1	73
65	The XXL Survey. Astronomy and Astrophysics, 2016, 592, A4.	2.1	66
66	The XXL Survey. Astronomy and Astrophysics, 2016, 592, A1.	2.1	199
67	nIFTy galaxy cluster simulations – II. Radiative models. Monthly Notices of the Royal Astronomical Society, 2016, 459, 2973-2991.	1.6	45
68	Cosmology with velocity dispersion counts: an alternative to measuring cluster halo masses. Monthly Notices of the Royal Astronomical Society, 2016, 462, 4117-4129.	1.6	16
69	The <i>XMM </i> Cluster Survey: evolution of the velocity dispersion–temperature relation over half a Hubble time. Monthly Notices of the Royal Astronomical Society, 2016, 463, 413-428.	1.6	7
70	nIFTY galaxy cluster simulations – III. The similarity and diversity of galaxies and subhaloes. Monthly Notices of the Royal Astronomical Society, 2016, 458, 1096-1116.	1.6	32
71	nIFTy galaxy cluster simulations – IV. Quantifying the influence of baryons on halo properties. Monthly Notices of the Royal Astronomical Society, 2016, 458, 4052-4073.	1.6	39
72	The eagle simulations of galaxy formation: Public release of halo and galaxy catalogues. Astronomy and Computing, 2016, 15, 72-89.	0.8	394

#	Article	IF	CITATIONS
73	nIFTy galaxy cluster simulations – I. Dark matter and non-radiative models. Monthly Notices of the Royal Astronomical Society, 2016, 457, 4063-4080.	1.6	63
74	Bent by baryons: the low-mass galaxy-halo relation. Monthly Notices of the Royal Astronomical Society, 2015, 448, 2941-2947.	1.6	163
75	Colours and luminosities of <i>z</i> Â=Â0.1 galaxies in the eagle simulation. Monthly Notices of the Royal Astronomical Society, 2015, 452, 2879-2896.	1.6	200
76	Testing Sunyaev–Zel'dovich measurements of the hot gas content of dark matter haloes using synthetic skies. Monthly Notices of the Royal Astronomical Society, 2015, 451, 3868-3881.	1.6	68
77	The evolution of galaxy metallicity scaling relations in cosmological hydrodynamical simulations. Monthly Notices of the Royal Astronomical Society, 2015, 452, 486-501.	1.6	28
78	The eagle simulations of galaxy formation: the importance of the hydrodynamics scheme. Monthly Notices of the Royal Astronomical Society, 2015, 454, 2277-2291.	1.6	192
79	Evolution of galaxy stellar masses and star formation rates in the eagle simulations. Monthly Notices of the Royal Astronomical Society, 2015, 450, 4486-4504.	1.6	332
80	Dissecting the thermal Sunyaev-Zeldovich-gravitational lensing cross-correlation with hydrodynamical simulations. Journal of Cosmology and Astroparticle Physics, 2015, 2015, 047-047.	1.9	31
81	Star formation quenching in simulated group and cluster galaxies: when, how, and why?. Monthly Notices of the Royal Astronomical Society, 2015, 447, 969-992.	1.6	116
82	Intrinsic alignments of galaxies in the EAGLE and cosmo-OWLS simulations. Monthly Notices of the Royal Astronomical Society, 2015, 454, 3328-3340.	1.6	66
83	The EAGLE simulations of galaxy formation: calibration of subgrid physics and model variations. Monthly Notices of the Royal Astronomical Society, 2015, 450, 1937-1961.	1.6	1,038
84	The alignment and shape of dark matter, stellar, and hot gas distributions in the EAGLE and cosmo-OWLS simulations. Monthly Notices of the Royal Astronomical Society, 2015, 453, 721-738.	1.6	108
85	The EAGLE project: simulating the evolution and assembly of galaxies and their environments. Monthly Notices of the Royal Astronomical Society, 2015, 446, 521-554.	1.6	2,549
86	The effect of baryons on the inner density profiles of rich clusters. Monthly Notices of the Royal Astronomical Society, 2015, 452, 343-355.	1.6	80
87	Baryon effects on the internal structure of $\hat{\nu}$ CDM haloes in the EAGLE simulations. Monthly Notices of the Royal Astronomical Society, 2015, 451, 1247-1267.	1.6	302
88	LoCuSS: Testing hydrostatic equilibrium in galaxy clusters. Monthly Notices of the Royal Astronomical Society: Letters, 2015, 456, L74-L78.	1.2	93
89	The impact of baryonic processes on the two-point correlation functions of galaxies, subhaloes and matter. Monthly Notices of the Royal Astronomical Society, 2014, 440, 2997-3010.	1.6	82
90	The thermal Sunyaev–Zel'dovich effect power spectrum in light of Planck. Monthly Notices of the Royal Astronomical Society, 2014, 440, 3645-3657.	1.6	65

#	Article	IF	CITATIONS
91	Towards a realistic population of simulated galaxy groups and clusters. Monthly Notices of the Royal Astronomical Society, 2014, 441, 1270-1290.	1.6	261
92	The similarity of the stellar mass fractions of galaxy groups and clusters. Monthly Notices of the Royal Astronomical Society, 2014, 437, 1362-1377.	1.6	49
93	The impact of galaxy formation on the total mass, mass profile and abundance of haloes. Monthly Notices of the Royal Astronomical Society, 2014, 442, 2641-2658.	1.6	137
94	Enriching the hot circumgalactic medium. Monthly Notices of the Royal Astronomical Society, 2013, 432, 3005-3024.	1.6	43
95	Why does the environmental influence on group and cluster galaxies extend beyond the virial radius?. Monthly Notices of the Royal Astronomical Society, 2013, 430, 3017-3031.	1.6	193
96	Are group- and cluster-scale dark matter haloes overconcentrated?. Monthly Notices of the Royal Astronomical Society, 2013, 436, 503-510.	1.6	23
97	The properties of the star-forming interstellar medium at <i>z</i> = 0.84-2.23 from HiZELS: mapping the internal dynamics and metallicity gradients in high-redshift disc galaxies. Monthly Notices of the Royal Astronomical Society, 2012, 426, 935-950.	1.6	139
98	Rotation rates, sizes and star formation efficiencies of a representative population of simulated disc galaxies. Monthly Notices of the Royal Astronomical Society, 2012, 427, 379-392.	1.6	44
99	ELLIPTICAL GALAXY MASSES OUT TO FIVE EFFECTIVE RADII: THE REALM OF DARK MATTER. Astrophysical Journal, 2012, 748, 2.	1.6	65
100	Global structure and kinematics of stellar haloes in cosmological hydrodynamic simulations. Monthly Notices of the Royal Astronomical Society, 2012, 420, 2245-2262.	1.6	128
101	Mock weak lensing analysis of simulated galaxy clusters: bias and scatter in mass and concentration. Monthly Notices of the Royal Astronomical Society, 2012, 421, 1073-1088.	1.6	75
102	The radial distribution of galaxies in groups and clusters. Monthly Notices of the Royal Astronomical Society, 2012, 423, 104-121.	1.6	95
103	The XMM Cluster Survey: the interplay between the brightest cluster galaxy and the intracluster medium via AGN feedback. Monthly Notices of the Royal Astronomical Society, 2012, 422, 2213-2229.	1.6	69
104	The competition between confinement and ram pressure and its implications for galaxies in groups and clusters. Monthly Notices of the Royal Astronomical Society, 2012, 424, 1179-1186.	1.6	41
105	Gas expulsion by quasar-driven winds as a solution to the overcooling problem in galaxy groups and clusters. Monthly Notices of the Royal Astronomical Society, 2011, 412, 1965-1984.	1.6	185
106	Mismatch and misalignment: dark haloes and satellites of disc galaxies. Monthly Notices of the Royal Astronomical Society, 2011, 415, 2607-2625.	1.6	107
107	Cosmological simulations of the formation of the stellar haloes around disc galaxies. Monthly Notices of the Royal Astronomical Society, 2011, 416, 2802-2820.	1.6	232
108	The population of Milky Way satellites in the \hat{I} cold dark matter cosmology. Monthly Notices of the Royal Astronomical Society, 2011, 417, 1260-1279.	1.6	121

#	Article	IF	CITATIONS
109	Quantifying the effect of baryon physics on weak lensing tomography. Monthly Notices of the Royal Astronomical Society, 2011, 417, 2020-2035.	1.6	253
110	Probing the cosmic web: intercluster filament detection using gravitational lensing. Monthly Notices of the Royal Astronomical Society, 2010, 401, 2257-2267.	1.6	26
111	The physics driving the cosmic star formation history. Monthly Notices of the Royal Astronomical Society, 2010, 402, 1536-1560.	1.6	704
112	The impact of AGN feedback and baryonic cooling on galaxy clusters as gravitational lenses. Monthly Notices of the Royal Astronomical Society, 2010, 406, 434-444.	1.6	55
113	The case for AGN feedback in galaxy groups. Monthly Notices of the Royal Astronomical Society, 2010, , no-no.	1.6	105
114	X-ray coronae in simulations of disc galaxy formation. Monthly Notices of the Royal Astronomical Society, 2010, 407, 1403-1422.	1.6	131
115	The accretion of galaxies into groups and clusters. Monthly Notices of the Royal Astronomical Society, 2009, 400, 937-950.	1.6	259
116	On the origin of cores in simulated galaxy clusters. Monthly Notices of the Royal Astronomical Society, 2009, 395, 180-196.	1.6	117
117	Ram pressure stripping the hot gaseous haloes of galaxies in groups and clusters. Monthly Notices of the Royal Astronomical Society, 2008, 383, 593-605.	1.6	303
118	Testing cold dark matter with the hierarchical build-up of stellar light. Monthly Notices of the Royal Astronomical Society, 2008, 385, 1003-1014.	1.6	35
119	Towards a holistic view of the heating and cooling of the intracluster medium. Monthly Notices of the Royal Astronomical Society, 2008, 386, 1309-1331.	1.6	93
120	The colours of satellite galaxies in groups and clusters. Monthly Notices of the Royal Astronomical Society, 2008, 389, 1619-1629.	1.6	265
121	The flip side of galaxy formation: a combined model of galaxy formation and cluster heating. Monthly Notices of the Royal Astronomical Society, 2008, , .	1.6	41
122	The impact of mergers on relaxed X-ray clusters - III. Effects on compact cool cores. Monthly Notices of the Royal Astronomical Society, 2008, 391, 1163-1175.	1.6	65
123	Modelling shock heating in cluster mergers – I. Moving beyond the spherical accretion model. Monthly Notices of the Royal Astronomical Society, 2007, 376, 497-522.	1.6	65
124	The baryon fraction of ÂCDM haloes. Monthly Notices of the Royal Astronomical Society, 2007, 377, 41-49.	1.6	123
125	Revisiting the baryon fractions of galaxy clusters: a comparison with WMAP 3-yr results. Monthly Notices of the Royal Astronomical Society, 2007, 377, 1457-1463.	1.6	67
126	The impact of mergers on relaxed X-ray clusters – II. Effects on global X-ray and Sunyaev–Zel'dovich properties and their scaling relations. Monthly Notices of the Royal Astronomical Society, 2007, 380, 437-454.	1.6	112

#	ARTICLE	IF	CITATIONS
127	The Sunyaev-Zeldovich background. Monthly Notices of the Royal Astronomical Society, 2007, 382, 1697-1706.	1.6	31
128	Entropy Generation in Merging Galaxy Clusters. , 2007, , 268-274.		2
129	Quantifying "Feedback―in Cool Core and Non-Cool Core Clusters. Globular Clusters - Guides To Galaxies, 2007, , 231-233.	0.1	0
130	The Influence of Baryons on the Mass Distribution of Dark Matter Halos. Astrophysical Journal, 2006, 651, 636-642.	1.6	43
131	An analytic investigation of the scatter in the integrated X-ray properties of galaxy groups and clusters. Monthly Notices of the Royal Astronomical Society, 2006, 366, 624-634.	1.6	35
132	The impact of mergers on relaxed X-ray clusters – I. Dynamical evolution and emergent transient structures. Monthly Notices of the Royal Astronomical Society, 2006, 373, 881-905.	1.6	239
133	Photoevaporation of Circumstellar Disks around Young Stars. Astrophysical Journal, 2004, 607, 890-903.	1.6	210
134	Models of the Intracluster Medium with Heating and Cooling: Explaining the Global and Structural Xâ€Ray Properties of Clusters. Astrophysical Journal, 2004, 613, 811-830.	1.6	87
135	The Sunyaevâ€Zeldovich Effect Signature of Excess Entropy in Distant, Massive Clusters. Astrophysical Journal, 2003, 591, 526-539.	1.6	40
136	Cluster Sunyaevâ€Zeldovich Effect Scaling Relations. Astrophysical Journal, 2003, 591, 515-525.	1.6	44
137	On the Relationship between Cooling Flows and Bubbles. Astrophysical Journal, 2003, 587, L75-L78.	1.6	5
138	The ClusterMgasâ€TXRelation: Evidence for a High Level of Preheating. Astrophysical Journal, 2002, 573, 515-523.	1.6	27
139	Nonthermal Xâ€Ray Emission: An Alternative to Cluster Cooling Flows?. Astrophysical Journal, 2002, 567, 762-771.	1.6	6
140	The relative impact of baryons and cluster shape on weak lensing mass estimates of galaxy clusters. Monthly Notices of the Royal Astronomical Society, 0, , .	1.6	14