
Claudia Arndt

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3010660/publications.pdf Version: 2024-02-01

#	Article	lF	CITATIONS
1	Validation of CD98hc as a Therapeutic Target for a Combination of Radiation and Immunotherapies in Head and Neck Squamous Cell Carcinoma. Cancers, 2022, 14, 1677.	3.7	7
2	Nanosensors in clinical development of CAR-T cell immunotherapy. Biosensors and Bioelectronics, 2022, 206, 114124.	10.1	5
3	Development and Functional Characterization of a Versatile Radio-/Immunotheranostic Tool for Prostate Cancer Management. Cancers, 2022, 14, 1996.	3.7	6
4	Targeting CD10 on B-Cell Leukemia Using the Universal CAR T-Cell Platform (UniCAR). International Journal of Molecular Sciences, 2022, 23, 4920.	4.1	2
5	Combining Radiation- with Immunotherapy in Prostate Cancer: Influence of Radiation on T Cells. International Journal of Molecular Sciences, 2022, 23, 7922.	4.1	2
6	Two Be or Not Two Be: The Nuclear Autoantigen La/SS-B Is Able to Form Dimers and Oligomers in a Redox Dependent Manner. International Journal of Molecular Sciences, 2021, 22, 3377.	4.1	5
7	And Yet It Moves: Oxidation of the Nuclear Autoantigen La/SS-B Is the Driving Force for Nucleo-Cytoplasmic Shuttling. International Journal of Molecular Sciences, 2021, 22, 9699.	4.1	7
8	Targeting Acute Myeloid Leukemia Using the RevCAR Platform: A Programmable, Switchable and Combinatorial Strategy. Cancers, 2021, 13, 4785.	3.7	15
9	T Cell Mediated Conversion of a Non-Anti-La Reactive B Cell to an Autoreactive Anti-La B Cell by Somatic Hypermutation. International Journal of Molecular Sciences, 2021, 22, 1198.	4.1	9
10	A Small Step, a Giant Leap: Somatic Hypermutation of a Single Amino Acid Leads to Anti-La Autoreactivity. International Journal of Molecular Sciences, 2021, 22, 12046.	4.1	1
11	UniCAR T cell immunotherapy enables efficient elimination of radioresistant cancer cells. Oncolmmunology, 2020, 9, 1743036.	4.6	25
12	Extended half-life target module for sustainable UniCAR T-cell treatment of STn-expressing cancers. Journal of Experimental and Clinical Cancer Research, 2020, 39, 77.	8.6	23
13	<p>Highly Efficient Targeting of EGFR-Expressing Tumor Cells with UniCAR T Cells via Target Modules Based on Cetuximab[®]</p> . OncoTargets and Therapy, 2020, Volume 13, 5515-5527.	2.0	17
14	Versatile chimeric antigen receptor platform for controllable and combinatorial T cell therapy. Oncolmmunology, 2020, 9, 1785608.	4.6	35
15	"UniCAR―modified off-the-shelf NK-92 cells for targeting of GD2-expressing tumour cells. Scientific Reports, 2020, 10, 2141.	3.3	62
16	Adaptor CAR Platforms—Next Generation of T Cell-Based Cancer Immunotherapy. Cancers, 2020, 12, 1302.	3.7	45
17	Anti-CAR-engineered T cells for epitope-based elimination of autologous CAR T cells. Cancer Immunology, Immunotherapy, 2019, 68, 1401-1415.	4.2	27
18	T cells engrafted with a UniCAR 28/z outperform UniCAR BB/z-transduced T cells in the face of regulatory T cell-mediated immunosuppression. Oncolmmunology, 2019, 8, e1621676.	4.6	17

Claudia Arndt

#	Article	IF	CITATIONS
19	An oligo-His-tag of a targeting module does not influence its biodistribution and the retargeting capabilities of UniCAR T cells. Scientific Reports, 2019, 9, 10547.	3.3	14
20	Conventional CARs versus modular CARs. Cancer Immunology, Immunotherapy, 2019, 68, 1713-1719.	4.2	37
21	A theranostic PSMA ligand for PET imaging and retargeting of T cells expressing the universal chimeric antigen receptor UniCAR. Oncolmmunology, 2019, 8, 1659095.	4.6	23
22	Midostaurin abrogates <scp>CD</scp> 33â€directed Uni <scp>CAR</scp> and <scp>CD</scp> 33â€ <scp>CD</scp> 3 bispecific antibody therapy in acute myeloid leukaemia. British Journal of Haematology, 2019, 186, 735-740.	2.5	13
23	Theranostic CAR T cell targeting: A brief review. Journal of Labelled Compounds and Radiopharmaceuticals, 2019, 62, 533-540.	1.0	20
24	Tonic Signaling and Its Effects on Lymphopoiesis of CAR-Armed Hematopoietic Stem and Progenitor Cells. Journal of Immunology, 2019, 202, 1735-1746.	0.8	7
25	Native Polyacrylamide Gels. Methods in Molecular Biology, 2019, 1855, 87-91.	0.9	11
26	Engrafting human regulatory T cells with a flexible modular chimeric antigen receptor technology. Journal of Autoimmunity, 2018, 90, 116-131.	6.5	64
27	From mono- to bivalent: improving theranostic properties of target modules for redirection of UniCAR T cells against EGFR-expressing tumor cells <i>in vitro</i> and <i>in vivo</i> . Oncotarget, 2018, 9, 25597-25616.	1.8	53
28	Coomassie Brilliant Blue Staining of Polyacrylamide Gels. Methods in Molecular Biology, 2018, 1853, 27-30.	0.9	16
29	Retargeting of UniCAR T cells with an <i>in vivo</i> synthesized target module directed against CD19 positive tumor cells. Oncotarget, 2018, 9, 7487-7500.	1.8	38
30	Cryogel-supported stem cell factory for customized sustained release of bispecific antibodies for cancer immunotherapy. Scientific Reports, 2017, 7, 42855.	3.3	51
31	A novel nanobody-based target module for retargeting of T lymphocytes to EGFR-expressing cancer cells via the modular UniCAR platform. Oncolmmunology, 2017, 6, e1287246.	4.6	85
32	Retargeting of T lymphocytes to PSCA- or PSMA positive prostate cancer cells using the novel modular chimeric antigen receptor platform technology "UniCAR― Oncotarget, 2017, 8, 31368-31385.	1.8	89
33	Development of novel target modules for retargeting of UniCAR T cells to GD2 positive tumor cells. Oncotarget, 2017, 8, 108584-108603.	1.8	42
34	Tregs activated by bispecific antibodies. OncoImmunology, 2015, 4, e994441.	4.6	9
35	Improved Killing of AML Blasts By Dual-Targeting of CD123 and CD33 Via Unitarg a Novel Antibody-Based Modular T Cell Retargeting System. Blood, 2015, 126, 2565-2565.	1.4	7
36	Unicar: A Novel Modular Retargeting Platform Technology for CAR T Cells. Blood, 2015, 126, 5549-5549.	1.4	17

Claudia Arndt

#	Article	IF	CITATIONS
37	Characterization of a Novel Single-Chain Bispecific Antibody for Retargeting of T Cells to Tumor Cells via the TCR Co-Receptor CD8. PLoS ONE, 2014, 9, e95517.	2.5	16
38	Redirection of CD4 ⁺ and CD8 ⁺ T lymphocytes via a novel antibodyâ€based modular targeting system triggers efficient killing of PSCA ⁺ prostate tumor cells. Prostate, 2014, 74, 1347-1358.	2.3	23
39	Simultaneous targeting of prostate stem cell antigen and prostateâ€specific membrane antigen improves the killing of prostate cancer cells using a novel modular T cellâ€retargeting system. Prostate, 2014, 74, 1335-1346.	2.3	38
40	Flexible Antigen-Specific Redirection of Human Regulatory T Cells Via a Novel Universal Chimeric Antigen Receptor System. Blood, 2014, 124, 3494-3494.	1.4	41
41	Development of a Bispecific Antibody-Releasing Stem Cell System for the Eradication of Acute Myeloid Leukemia Blasts Via Redirected Immune Effector Cells. Blood, 2014, 124, 4810-4810.	1.4	1
42	A Novel Ex Vivo Isolation and Expansion Procedure for Chimeric Antigen Receptor Engrafted Human T Cells. PLoS ONE, 2014, 9, e93745.	2.5	37
43	Retargeting of regulatory T cells to surface-inducible autoantigen La/SS-B. Journal of Autoimmunity, 2013, 42, 105-116.	6.5	58
44	TCR/CD3 activation and co-stimulation combined in one T cell retargeting system improve anti-tumor immunity. Oncolmmunology, 2013, 2, e26770.	4.6	8
45	Enhancing The Efficacy and Specificity Of Antibody-Based T Cell Retargeting Strategies Against Hematological Malignancies. Blood, 2013, 122, 930-930.	1.4	4
46	Cytotoxic Activity Of Bispecific Antibody-Redirected Human Regulatory T Cells: Fact Or Artifact. Blood, 2013, 122, 5430-5430.	1.4	0
47	Retargeting of Human Regulatory T Cells by Single-Chain Bispecific Antibodies. Journal of Immunology, 2012, 188, 1551-1558.	0.8	48
48	Cancer Immunotherapy by Retargeting of Immune Effector Cells via Recombinant Bispecific Antibody Constructs. Antibodies, 2012, 1, 172-198.	2.5	28
49	Age dependency of estrogen responsiveness in the uterus and adipose tissue of aromatase-knockout (ArKO) mice. Journal of Steroid Biochemistry and Molecular Biology, 2012, 128, 29-37.	2.5	5
50	Novel Humanized and Highly Efficient Bispecific Antibodies Mediate Killing of Prostate Stem Cell Antigen-Expressing Tumor Cells by CD8+ and CD4+ T Cells. Journal of Immunology, 2012, 189, 3249-3259.	0.8	88
51	Coomassie-Brilliant Blue Staining of Polyacrylamide Gels. Methods in Molecular Biology, 2012, 869, 465-469.	0.9	20
52	Generation of single-chain bispecific green fluorescent protein fusion antibodies for imaging of antibody-induced T cell synapses. Analytical Biochemistry, 2012, 423, 261-268.	2.4	29
53	Unexpected recombinations in single chain bispecific anti-CD3–anti-CD33 antibodies can be avoided by a novel linker module. Molecular Immunology, 2011, 49, 474-482.	2.2	40
54	Redirection of Immune Effector Cells by Bispecific Antibody Systems for the Treatment of Acute Myeloid Leukemia. Blood, 2011, 118, 1528-1528.	1.4	5

#	Article	IF	CITATIONS
55	Chimeric Antigen Receptor-Engineered T Cells for Immunotherapy of Acute Myeloid Leukemia. Blood, 2011, 118, 2618-2618.	1.4	8
56	Antigen-Specific Redirection of Human Regulatory T Cells by Bispecific Antibodies,. Blood, 2011, 118, 4041-4041.	1.4	48