Daniel G Anderson

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/301064/publications.pdf

Version: 2024-02-01

180 papers 41,000 citations

93 h-index 179 g-index

182 all docs

182 docs citations

182 times ranked 47577 citing authors

#	Article	IF	CITATIONS
1	Knocking down barriers: advances in siRNA delivery. Nature Reviews Drug Discovery, 2009, 8, 129-138.	21.5	2,639
2	Non-viral vectors for gene-based therapy. Nature Reviews Genetics, 2014, 15, 541-555.	7.7	2,572
3	Physical and mechanical properties of PLA, and their functions in widespread applications — A comprehensive review. Advanced Drug Delivery Reviews, 2016, 107, 367-392.	6.6	1,957
4	CRISPR-Cas9 Knockin Mice for Genome Editing and Cancer Modeling. Cell, 2014, 159, 440-455.	13.5	1,566
5	Delivery materials for siRNA therapeutics. Nature Materials, 2013, 12, 967-977.	13.3	1,513
6	A combinatorial library of lipid-like materials for delivery of RNAi therapeutics. Nature Biotechnology, 2008, 26, 561-569.	9.4	1,076
7	Genome editing with Cas9 in adult mice corrects a disease mutation and phenotype. Nature Biotechnology, 2014, 32, 551-553.	9.4	823
8	Lipid-like materials for low-dose, in vivo gene silencing. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 1864-1869.	3.3	776
9	Nanoliter-scale synthesis of arrayed biomaterials and application to human embryonic stem cells. Nature Biotechnology, 2004, 22, 863-866.	9.4	734
10	Therapeutic genome editing by combined viral and non-viral delivery of CRISPR system components in vivo. Nature Biotechnology, 2016, 34, 328-333.	9.4	732
11	Size- and shape-dependent foreign body immune response to materials implanted in rodents and non-human primates. Nature Materials, 2015, 14, 643-651.	13.3	700
12	Therapeutic siRNA silencing in inflammatory monocytes in mice. Nature Biotechnology, 2011, 29, 1005-1010.	9.4	697
13	Delivering the Messenger: Advances in Technologies for Therapeutic mRNA Delivery. Molecular Therapy, 2019, 27, 710-728.	3.7	685
14	CRISPR-mediated direct mutation of cancer genes in the mouse liver. Nature, 2014, 514, 380-384.	13.7	673
15	Efficiency of siRNA delivery by lipid nanoparticles is limited by endocytic recycling. Nature Biotechnology, 2013, 31, 653-658.	9.4	660
16	Long-term glycemic control using polymer-encapsulated human stem cell–derived beta cells in immune-competent mice. Nature Medicine, 2016, 22, 306-311.	15.2	564
17	A Combinatorial Polymer Library Approach Yields Insight into Nonviral Gene Delivery. Accounts of Chemical Research, 2008, 41, 749-759.	7.6	530
18	Lipid Nanoparticle Assisted mRNA Delivery for Potent Cancer Immunotherapy. Nano Letters, 2017, 17, 1326-1335.	4. 5	506

#	Article	IF	CITATIONS
19	Combinatorial development of biomaterials for clonal growth of human pluripotent stem cells. Nature Materials, 2010, 9, 768-778.	13.3	504
20	Advances in the delivery of RNA therapeutics: from concept to clinical reality. Genome Medicine, 2017, 9, 60.	3.6	491
21	Optimization of Lipid Nanoparticle Formulations for mRNA Delivery in Vivo with Fractional Factorial and Definitive Screening Designs. Nano Letters, 2015, 15, 7300-7306.	4.5	484
22	In vivo endothelial siRNA delivery using polymeric nanoparticles with low molecular weight. Nature Nanotechnology, 2014, 9, 648-655.	15.6	466
23	Injectable Selfâ€Healing Glucoseâ€Responsive Hydrogels with pHâ€Regulated Mechanical Properties. Advanced Materials, 2016, 28, 86-91.	11.1	466
24	Managing diabetes with nanomedicine: challenges and opportunities. Nature Reviews Drug Discovery, 2015, 14, 45-57.	21.5	459
25	Semi-Automated Synthesis and Screening of a Large Library of Degradable Cationic Polymers for Gene Delivery. Angewandte Chemie - International Edition, 2003, 42, 3153-3158.	7.2	445
26	Degradable lipid nanoparticles with predictable in vivo siRNA delivery activity. Nature Communications, 2014, 5, 4277.	5.8	431
27	Delivery technologies for genome editing. Nature Reviews Drug Discovery, 2017, 16, 387-399.	21.5	422
28	Combinatorial hydrogel library enables identification of materials that mitigate the foreign body response in primates. Nature Biotechnology, 2016, 34, 345-352.	9.4	417
29	Delivery of mRNA vaccines with heterocyclic lipids increases anti-tumor efficacy by STING-mediated immune cell activation. Nature Biotechnology, 2019, 37, 1174-1185.	9.4	398
30	Injectable Nano-Network for Glucose-Mediated Insulin Delivery. ACS Nano, 2013, 7, 4194-4201.	7.3	395
31	Structure-guided chemical modification of guide RNA enables potent non-viral in vivo genome editing. Nature Biotechnology, 2017, 35, 1179-1187.	9.4	375
32	Lipopeptide nanoparticles for potent and selective siRNA delivery in rodents and nonhuman primates. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 3955-3960.	3.3	366
33	Glucose-Responsive Microgels Integrated with Enzyme Nanocapsules for Closed-Loop Insulin Delivery. ACS Nano, 2013, 7, 6758-6766.	7.3	356
34	Strategies, design, and chemistry in siRNA delivery systems. Advanced Drug Delivery Reviews, 2019, 144, 133-147.	6.6	330
35	Combinatorial discovery of polymers resistant to bacterial attachment. Nature Biotechnology, 2012, 30, 868-875.	9.4	328
36	Structure/property studies of polymeric gene delivery using a library of poly(\hat{l}^2 -amino esters). Molecular Therapy, 2005, 11, 426-434.	3.7	326

3

#	Article	IF	CITATIONS
37	Dendrimer-RNA nanoparticles generate protective immunity against lethal Ebola, H1N1 influenza, and <i>Toxoplasma gondii</i> challenges with a single dose. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, E4133-42.	3.3	320
38	Proliferation and Recruitment Contribute to Myocardial Macrophage Expansion in Chronic Heart Failure. Circulation Research, 2016, 119, 853-864.	2.0	318
39	Adenovirus-Mediated Somatic Genome Editing of <i>Pten</i> by CRISPR/Cas9 in Mouse Liver in Spite of Cas9-Specific Immune Responses. Human Gene Therapy, 2015, 26, 432-442.	1.4	291
40	Rapid Discovery of Potent siRNA-Containing Lipid Nanoparticles Enabled by Controlled Microfluidic Formulation. Journal of the American Chemical Society, 2012, 134, 6948-6951.	6.6	288
41	Sustained antigen availability during germinal center initiation enhances antibody responses to vaccination. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, E6639-E6648.	3.3	286
42	Materials for non-viral intracellular delivery of messenger RNA therapeutics. Journal of Controlled Release, 2016, 240, 227-234.	4.8	286
43	MATERIALS SCIENCE: Smart Biomaterials. Science, 2004, 305, 1923-1924.	6.0	281
44	Accelerating the Translation of Nanomaterials in Biomedicine. ACS Nano, 2015, 9, 6644-6654.	7.3	279
45	Biomaterial microarrays: rapid, microscale screening of polymer–cell interaction. Biomaterials, 2005, 26, 4892-4897.	5.7	267
46	Nanoparticle-based drug delivery systems: a commercial and regulatory outlook as the field matures. Expert Opinion on Drug Delivery, 2017, 14, 851-864.	2.4	261
47	A polymer library approach to suicide gene therapy for cancer. Proceedings of the National Academy of Sciences of the United States of America, 2004, 101, 16028-16033.	3.3	255
48	The clinical progress of mRNA vaccines and immunotherapies. Nature Biotechnology, 2022, 40, 840-854.	9.4	248
49	Alginate encapsulation as long-term immune protection of allogeneic pancreatic islet cells transplanted into the omental bursa of macaques. Nature Biomedical Engineering, 2018, 2, 810-821.	11.6	242
50	RNA Circularization Diminishes Immunogenicity and Can Extend Translation Duration InÂVivo. Molecular Cell, 2019, 74, 508-520.e4.	4.5	221
51	InÂVivo Silencing of the Transcription Factor IRF5 Reprograms the Macrophage Phenotype and Improves Infarct Healing. Journal of the American College of Cardiology, 2014, 63, 1556-1566.	1.2	220
52	Polymer–Lipid Nanoparticles for Systemic Delivery of mRNA to the Lungs. Angewandte Chemie - International Edition, 2016, 55, 13808-13812.	7.2	220
53	Inhaled Nanoformulated mRNA Polyplexes for Protein Production in Lung Epithelium. Advanced Materials, 2019, 31, e1805116.	11.1	212
54	Small RNA combination therapy for lung cancer. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, E3553-61.	3.3	210

#	Article	IF	CITATIONS
55	<i>In Vivo</i> Compatibility of Graphene Oxide with Differing Oxidation States. ACS Nano, 2015, 9, 3866-3874.	7.3	197
56	An elastic second skin. Nature Materials, 2016, 15, 911-918.	13.3	195
57	Glucose-responsive insulin activity by covalent modification with aliphatic phenylboronic acid conjugates. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, 2401-2406.	3.3	190
58	Partial DNA-guided Cas9 enables genome editing with reduced off-target activity. Nature Chemical Biology, 2018, 14, 311-316.	3.9	186
59	Barcoded nanoparticles for high throughput in vivo discovery of targeted therapeutics. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, 2060-2065.	3.3	185
60	Synthesis and Biological Evaluation of Ionizable Lipid Materials for the In Vivo Delivery of Messenger RNA to B Lymphocytes. Advanced Materials, 2017, 29, 1606944.	11.1	174
61	Bioinspired Alkenyl Amino Alcohol Ionizable Lipid Materials for Highly Potent In Vivo mRNA Delivery. Advanced Materials, 2016, 28, 2939-2943.	11.1	172
62	Endothelial TGF- \hat{i}^2 signalling drives vascular inflammation and atherosclerosis. Nature Metabolism, 2019, 1, 912-926.	5.1	172
63	RNAi targeting multiple cell adhesion molecules reduces immune cell recruitment and vascular inflammation after myocardial infarction. Science Translational Medicine, 2016, 8, 342ra80.	5.8	169
64	Synergistic lipid compositions for albumin receptor mediated delivery of mRNA to the liver. Nature Communications, 2020, 11, 2424.	5.8	167
65	Silencing or Stimulation? siRNA Delivery and the Immune System. Annual Review of Chemical and Biomolecular Engineering, 2011, 2, 77-96.	3.3	161
66	Reduction of measurement noise in a continuous glucose monitor by coating the sensor with a zwitterionic polymer. Nature Biomedical Engineering, 2018, 2, 894-906.	11.6	150
67	Materials for stem cell factories of the future. Nature Materials, 2014, 13, 570-579.	13.3	145
68	Macrophages retain hematopoietic stem cells in the spleen via VCAM-1. Journal of Experimental Medicine, 2015, 212, 497-512.	4.2	143
69	Core–Shell Hydrogel Microcapsules for Improved Islets Encapsulation. Advanced Healthcare Materials, 2013, 2, 667-672.	3.9	141
70	Optimization of a Degradable Polymer–Lipid Nanoparticle for Potent Systemic Delivery of mRNA to the Lung Endothelium and Immune Cells. Nano Letters, 2018, 18, 6449-6454.	4.5	141
71	Surface-engineered substrates for improved human pluripotent stem cell culture under fully defined conditions. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 18714-18719.	3.3	137
72	Efficacy and immunogenicity of unmodified and pseudouridine-modified mRNA delivered systemically with lipid nanoparticles inÂvivo. Biomaterials, 2016, 109, 78-87.	5.7	137

#	Article	IF	CITATIONS
73	Adenine base editing in an adult mouse model of tyrosinaemia. Nature Biomedical Engineering, 2020, 4, 125-130.	11.6	136
74	Comprehensive proteomic characterization of stem cell-derived extracellular matrices. Biomaterials, 2017, 128, 147-159.	5.7	132
75	Multiparametric approach for the evaluation of lipid nanoparticles for siRNA delivery. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 12881-12886.	3.3	131
76	Effect of molecular weight of amine end-modified poly(\hat{l}^2 -amino ester)s on gene delivery efficiency and toxicity. Biomaterials, 2012, 33, 3594-3603.	5.7	127
77	Biomanufacturing for clinically advanced cell therapies. Nature Biomedical Engineering, 2018, 2, 362-376.	11.6	127
78	CRISPR–Cas: a tool for cancer research and therapeutics. Nature Reviews Clinical Oncology, 2019, 16, 281-295.	12.5	127
79	Uremic Toxin Indoxyl Sulfate Promotes Proinflammatory Macrophage Activation Via the Interplay of OATP2B1 and Dll4-Notch Signaling. Circulation, 2019, 139, 78-96.	1.6	126
80	mRNA Delivery for Therapeutic Anti-HER2 Antibody Expression InÂVivo. Molecular Therapy, 2019, 27, 1415-1423.	3.7	125
81	Ly6Clo monocytes drive immunosuppression and confer resistance to anti-VEGFR2 cancer therapy. Journal of Clinical Investigation, 2017, 127, 3039-3051.	3.9	124
82	Genetic and hypoxic alterations of the micro <scp>RNA</scp> â€210― <scp>ISCU</scp> 1/2 axis promote iron–sulfur deficiency and pulmonary hypertension. EMBO Molecular Medicine, 2015, 7, 695-713.	3.3	120
83	Degradable Terpolymers with Alkyl Side Chains Demonstrate Enhanced Gene Delivery Potency and Nanoparticle Stability. Advanced Materials, 2013, 25, 1487-1493.	11.1	119
84	Rapid Optimization of Gene Delivery by Parallel End-modification of Poly(\hat{l}^2 -amino ester)s. Molecular Therapy, 2007, 15, 1306-1312.	3.7	118
85	Engineered PLGA microparticles for long-term, pulsatile release of STING agonist for cancer immunotherapy. Science Translational Medicine, 2020, 12, .	5.8	117
86	Dendrimer-Inspired Nanomaterials for the <i>in Vivo</i> Delivery of siRNA to Lung Vasculature. Nano Letters, 2015, 15, 3008-3016.	4.5	113
87	Glucose-Responsive Nanoparticles for Rapid and Extended Self-Regulated Insulin Delivery. ACS Nano, 2020, 14, 488-497.	7.3	113
88	Systemic RNAi-mediated Gene Silencing in Nonhuman Primate and Rodent Myeloid Cells. Molecular Therapy - Nucleic Acids, 2012, 1, e4.	2.3	112
89	Glucose-responsive insulin by molecular and physical design. Nature Chemistry, 2017, 9, 937-944.	6.6	106
90	Smallâ€Molecule Endâ€Groups of Linear Polymer Determine Cellâ€type Geneâ€Delivery Efficacy. Advanced Materials, 2009, 21, 4947-4951.	11.1	105

#	Article	IF	Citations
91	Multiplexed RNAi therapy against brain tumor-initiating cells via lipopolymeric nanoparticle infusion delays glioblastoma progression. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, E6147-E6156.	3.3	102
92	Silencing of CCR2 in myocarditis. European Heart Journal, 2015, 36, 1478-1488.	1.0	101
93	Poly(glycoamidoamine) Brushes Formulated Nanomaterials for Systemic siRNA and mRNA Delivery in Vivo. Nano Letters, 2016, 16, 842-848.	4.5	98
94	Genome-Wide CRISPR Screen Identifies Regulators of Mitogen-Activated Protein Kinase as Suppressors of Liver Tumors in Mice. Gastroenterology, 2017, 152, 1161-1173.e1.	0.6	97
95	<i>In Vitro</i> – <i>In Vivo</i> Translation of Lipid Nanoparticles for Hepatocellular siRNA Delivery. ACS Nano, 2012, 6, 6922-6929.	7.3	96
96	Enhanced function of immuno-isolated islets in diabetes therapy byÂco-encapsulation with an anti-inflammatory drug. Biomaterials, 2013, 34, 5792-5801.	5.7	96
97	Exploiting Electrostatic Interactions in Polymer–Nanoparticle Hydrogels. ACS Macro Letters, 2015, 4, 848-852.	2.3	95
98	Ultrasound-mediated gastrointestinal drug delivery. Science Translational Medicine, 2015, 7, 310ra168.	5.8	95
99	Ionizable Aminoâ€Polyesters Synthesized via Ring Opening Polymerization of Tertiary Aminoâ€Alcohols for Tissue Selective mRNA Delivery. Advanced Materials, 2018, 30, e1801151.	11.1	95
100	Discovery of Novel Materials with Broad Resistance to Bacterial Attachment Using Combinatorial Polymer Microarrays. Advanced Materials, 2013, 25, 2542-2547.	11.1	92
101	Neutrophil Responses to Sterile Implant Materials. PLoS ONE, 2015, 10, e0137550.	1.1	92
102	A retrievable implant for the long-term encapsulation and survival of therapeutic xenogeneic cells. Nature Biomedical Engineering, 2020, 4, 814-826.	11.6	90
103	Precision cancer mouse models through genome editing with CRISPR-Cas9. Genome Medicine, 2015, 7, 53.	3.6	88
104	Cell-Cycle-Targeting MicroRNAs as Therapeutic Tools against Refractory Cancers. Cancer Cell, 2017, 31, 576-590.e8.	7.7	84
105	The NIH Somatic Cell Genome Editing program. Nature, 2021, 592, 195-204.	13.7	84
106	Myocardial Delivery of Lipidoid Nanoparticle Carrying modRNA Induces Rapid and Transient Expression. Molecular Therapy, 2016, 24, 66-75.	3.7	82
107	Smart approaches to glucose-responsive drug delivery. Journal of Drug Targeting, 2015, 23, 651-655.	2.1	81
108	Endothelial siRNA delivery in nonhuman primates using ionizable low–molecular weight polymeric nanoparticles. Science Advances, 2018, 4, eaar8409.	4.7	81

#	Article	IF	CITATIONS
109	Ionizable Amphiphilic Dendrimerâ€Based Nanomaterials with Alkylâ€Chainâ€Substituted Amines for Tunable siRNA Delivery to the Liver Endothelium Inâ€Vivo. Angewandte Chemie - International Edition, 2014, 53, 14397-14401.	7.2	80
110	Nanoparticle-encapsulated siRNAs for gene silencing in the haematopoietic stem-cell niche. Nature Biomedical Engineering, 2020, 4, 1076-1089.	11.6	80
111	Microfluidic Fabrication of Colloidal Nanomaterials-Encapsulated Microcapsules for Biomolecular Sensing. Nano Letters, 2017, 17, 2015-2020.	4.5	78
112	Nanoparticle-formulated siRNA targeting integrins inhibits hepatocellular carcinoma progression in mice. Nature Communications, 2014, 5, 3869.	5.8	76
113	Biomaterials for Personalized Cell Therapy. Advanced Materials, 2020, 32, e1902005.	11.1	76
114	Gene Delivery Properties of End-Modified Poly(\hat{l}^2 -amino ester)s. Bioconjugate Chemistry, 2007, 18, 1887-1896.	1.8	75
115	Discovery of a Novel Polymer for Human Pluripotent Stem Cell Expansion and Multilineage Differentiation. Advanced Materials, 2015, 27, 4006-4012.	11.1	7 5
116	Report of the Key Opinion Leaders Meeting on Stem Cell-derived Beta Cells. Transplantation, 2018, 102, 1223-1229.	0.5	72
117	Knockdown and knockout of \hat{l}^21 -integrin in hepatocytes impairs liver regeneration through inhibition of growth factor signalling. Nature Communications, 2014, 5, 3862.	5.8	71
118	Delivery of Tissue-Targeted Scalpels: Opportunities and Challenges for <i>In Vivo</i> CRISPR/Cas-Based Genome Editing. ACS Nano, 2020, 14, 9243-9262.	7.3	69
119	Engineered 3D-printed artificial axons. Scientific Reports, 2018, 8, 478.	1.6	67
120	Chemical modifications of adenine base editor mRNA and guide RNA expand its application scope. Nature Communications, 2020, 11 , 1979 .	5.8	66
121	Customizable Lipid Nanoparticle Materials for the Delivery of siRNAs and mRNAs. Angewandte Chemie - International Edition, 2018, 57, 13582-13586.	7.2	64
122	Bacterial Attachment to Polymeric Materials Correlates with Molecular Flexibility and Hydrophilicity. Advanced Healthcare Materials, 2015, 4, 695-701.	3.9	62
123	Photo-response behavior of electrospun nanofibers based on spiropyran-cyclodextrin modified polymer. Journal of Materials Chemistry, 2010, 20, 9910.	6.7	61
124	Rapid, Single-Cell Analysis and Discovery of Vectored mRNA Transfection InÂVivo with a loxP-Flanked tdTomato Reporter Mouse. Molecular Therapy - Nucleic Acids, 2018, 10, 55-63.	2.3	59
125	High throughput discovery of new fouling-resistant surfaces. Journal of Materials Chemistry, 2011, 21, 693-704.	6.7	58
126	Poly(βâ€amino ester)â€ <i>co</i> â€poly(caprolactone) Terpolymers as Nonviral Vectors for mRNA Delivery In Vitro and In Vivo. Advanced Healthcare Materials, 2018, 7, e1800249.	3.9	58

#	Article	IF	CITATIONS
127	Sequenceâ€Defined Oligomers from Hydroxyproline Building Blocks for Parallel Synthesis Applications. Angewandte Chemie - International Edition, 2016, 55, 9529-9533.	7.2	56
128	Title is missing!. Angewandte Chemie, 2003, 115, 3261-3266.	1.6	55
129	MicroRNA regulation of endothelial TREX1 reprograms the tumour microenvironment. Nature Communications, 2016, 7, 13597.	5.8	54
130	BOLA (BolA Family Member 3) Deficiency Controls Endothelial Metabolism and Glycine Homeostasis in Pulmonary Hypertension. Circulation, 2019, 139, 2238-2255.	1.6	54
131	Systemic delivery of mRNA and DNA to the lung using polymer-lipid nanoparticles. Biomaterials, 2021, 275, 120966.	5.7	54
132	S100A9-RAGE Axis Accelerates Formation of Macrophage-Mediated Extracellular Vesicle Microcalcification in Diabetes Mellitus. Arteriosclerosis, Thrombosis, and Vascular Biology, 2020, 40, 1838-1853.	1.1	52
133	A defined synthetic substrate for serum-free culture of human stem cell derived cardiomyocytes with improved functional maturity identified using combinatorial materials microarrays. Biomaterials, 2015, 61, 257-265.	5.7	47
134	Ex Vivo Cytosolic Delivery of Functional Macromolecules to Immune Cells. PLoS ONE, 2015, 10, e0118803.	1.1	47
135	Rapid Optimization of Gene Delivery by Parallel End-modification of Poly(\hat{l}^2 -amino ester)s. Molecular Therapy, 2007, 15, 1306-12.	3.7	47
136	Ultrasound-Mediated Delivery of RNA to Colonic Mucosa of LiveÂMice. Gastroenterology, 2017, 152, 1151-1160.	0.6	46
137	Macrophage Notch Ligand Delta-Like 4 Promotes Vein Graft Lesion Development. Arteriosclerosis, Thrombosis, and Vascular Biology, 2015, 35, 2343-2353.	1.1	43
138	Prediction of Broad-Spectrum Pathogen Attachment to Coating Materials for Biomedical Devices. ACS Applied Materials & Devices, 2018, 10, 139-149.	4.0	43
139	Modelling human embryoid body cell adhesion to a combinatorial library of polymer surfaces. Journal of Materials Chemistry, 2012, 22, 20902.	6.7	42
140	Polymer–Lipid Nanoparticles for Systemic Delivery of mRNA to the Lungs. Angewandte Chemie, 2016, 128, 14012-14016.	1.6	42
141	Spatial Control of Gene Expression by Nanocarriers Using Heparin Masking and Ultrasound-Targeted Microbubble Destruction. ACS Nano, 2016, 10, 7267-7278.	7.3	40
142	High throughput screening for biomaterials discovery. Journal of Controlled Release, 2014, 190, 115-126.	4.8	38
143	Frataxin deficiency promotes endothelial senescence in pulmonary hypertension. Journal of Clinical Investigation, 2021, 131, .	3.9	38
144	Loss of \hat{l} ±-catenin elicits a cholestatic response and impairs liver regeneration. Scientific Reports, 2014, 4, 6835.	1.6	36

#	Article	IF	CITATIONS
145	Nanotechnology for InÂvivo Targeted siRNA Delivery. Advances in Genetics, 2014, 88, 37-69.	0.8	34
146	Nucleic acid-mediated intracellular protein delivery by lipid-like nanoparticles. Biomaterials, 2014, 35, 6454-6461.	5.7	33
147	Stem Cell Factor Gene Transfer Improves Cardiac Function After Myocardial Infarction in Swine. Circulation: Heart Failure, 2015, 8, 167-174.	1.6	33
148	Microgel encapsulated nanoparticles for glucose-responsive insulin delivery. Biomaterials, 2021, 267, 120458.	5.7	32
149	MicroRNA regulation of the MRN complex impacts DNA damage, cellular senescence, and angiogenic signaling. Cell Death and Disease, 2018, 9, 632.	2.7	27
150	Application of Targeted Molecular and Material Property Optimization to Bacterial Attachment-Resistant (Meth)acrylate Polymers. Biomacromolecules, 2016, 17, 2830-2838.	2.6	26
151	Chemical Tuning of Fibers Drawn from Extensible Hyaluronic Acid Networks. Journal of the American Chemical Society, 2020, 142, 19715-19721.	6.6	24
152	Polymers with hydro-responsive topography identified using high throughput AFM of an acrylate microarray. Soft Matter, 2011, 7, 7194.	1.2	22
153	Sequenceâ€Defined Oligomers from Hydroxyproline Building Blocks for Parallel Synthesis Applications. Angewandte Chemie, 2016, 128, 9681-9685.	1.6	22
154	Systems Approach to Discovery of Therapeutic Targets for Vein Graft Disease: PPARα Pivotally Regulates Metabolism, Activation, and Heterogeneity of Macrophages and Lesion Development. Circulation, 2021, 143, 2454-2470.	1.6	21
155	Large-Scale Quantitative Proteomics Identifies the Ubiquitin Ligase Nedd4-1 as an Essential Regulator of Liver Regeneration. Developmental Cell, 2017, 42, 616-625.e8.	3.1	20
156	Downregulation of the Arg/N-degron Pathway Sensitizes Cancer Cells to Chemotherapy InÂVivo. Molecular Therapy, 2020, 28, 1092-1104.	3.7	19
157	Simultaneous spatiotemporal tracking and oxygen sensing of transient implants in vivo using hot-spot MRI and machine learning. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 4861-4870.	3.3	18
158	mRNA therapeutics: beyond vaccine applications. Trends in Molecular Medicine, 2021, 27, 923-924.	3.5	18
159	Poly(Limonene Thioether) Scaffold for Tissue Engineering. Advanced Healthcare Materials, 2016, 5, 813-821.	3.9	17
160	Poly(ß-amino ester)s for DNA delivery. Israel Journal of Chemistry, 2005, 45, 477-485.	1.0	16
161	Lipidoid mRNA Nanoparticles for Myocardial Delivery in Rodents. Methods in Molecular Biology, 2017, 1521, 153-166.	0.4	15
162	Magnetic Retrieval of Encapsulated Beta Cell Transplants from Diabetic Mice Using Dualâ€Function MRI Visible and Retrievable Microcapsules. Advanced Materials, 2020, 32, e1904502.	11.1	15

#	Article	IF	Citations
163	Splenic progenitors aid in maintaining high neutrophil numbers at sites of sterile chronic inflammation. Journal of Leukocyte Biology, 2016, 100, 253-260.	1.5	14
164	Customizable Lipid Nanoparticle Materials for the Delivery of siRNAs and mRNAs. Angewandte Chemie, 2018, 130, 13770-13774.	1.6	14
165	InÂVivo RNAi-Mediated eIF3m Knockdown Affects Ribosome Biogenesis and Transcription but Has Limited Impact on mRNA-Specific Translation. Molecular Therapy - Nucleic Acids, 2020, 19, 252-266.	2.3	14
166	Engineered insulin-polycation complexes for glucose-responsive delivery with high insulin loading. Journal of Controlled Release, 2021, 338, 71-79.	4.8	14
167	Circular RNA migration in agarose gel electrophoresis. Molecular Cell, 2022, 82, 1768-1777.e3.	4.5	13
168	Cytosolic delivery of siRNA by ultra-high affinity dsRNA binding proteins. Nucleic Acids Research, 2017, 45, 7602-7614.	6.5	11
169	Opportunities and Challenges in mRNA Therapeutics. Accounts of Chemical Research, 2022, 55, 1-1.	7.6	11
170	RNAi-nanoparticulate manipulation of gene expression as a new functional genomics tool in the liver. Journal of Hepatology, 2016, 64, 899-907.	1.8	9
171	Engineering synthetically modified insulin for glucose-responsive diabetes therapy. Expert Review of Endocrinology and Metabolism, 2015, 10, 483-489.	1.2	8
172	Nanoscale delivery platforms for RNA therapeutics: Challenges and the current state of the art. Med, 2022, 3, 167-187.	2.2	7
173	Polyimide Electrode-Based Electrical Stimulation Impedes Early Stage Muscle Graft Regeneration. Frontiers in Neurology, 2019, 10, 252.	1.1	6
174	Gene Delivery: Inhaled Nanoformulated mRNA Polyplexes for Protein Production in Lung Epithelium (Adv. Mater. 8/2019). Advanced Materials, 2019, 31, 1970053.	11.1	5
175	Selective targeting of MYC mRNA by stabilized antisense oligonucleotides. Oncogene, 2021, 40, 6527-6539.	2.6	5
176	Cell Delivery: Core–Shell Hydrogel Microcapsules for Improved Islets Encapsulation (Adv. Healthcare) Tj ETQq0	0 <u>0 g</u> gBT /	Overlock 10
177	Identification of a long non-coding RNA regulator of liver carcinoma cell survival. Cell Death and Disease, 2021, 12, 178.	2.7	4
178	Conducting Polymers: Stretchable Polymeric Multielectrode Array for Conformal Neural Interfacing (Adv. Mater. 9/2014). Advanced Materials, 2014, 26, 1310-1310.	11.1	1
179	Regulating Foreign-Body Responses: Development of Cationic Polymer Coatings to Regulate Foreign-Body Responses (Adv. Mater. 24/2011). Advanced Materials, 2011, 23, H129-H129.	11.1	0

Drug Delivery: Lipid-Modified Aminoglycoside Derivatives for In Vivo siRNA Delivery (Adv. Mater.) Tj ETQq0 0 0 rgBT/Oyerlock 10 Tf 50 6 rgBT/Oyerlock 10 Tf 50 7 rgBT/Oyer

180