Shuhei Yamada

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3010403/publications.pdf Version: 2024-02-01

<u> <u>Shiihei Yamada</u></u>

#	Article	IF	CITATIONS
1	The Specific Role of Dermatan Sulfate as an Instructive Glycosaminoglycan in Tissue Development. International Journal of Molecular Sciences, 2022, 23, 7485.	4.1	13
2	Systematic investigation of the skin in <i>Chst14â^'/â^'</i> mice: A model for skin fragility in musculocontractural Ehlers–Danlos syndrome caused by <i>CHST14</i> variants (mcEDS- <i>CHST14</i>). Glycobiology, 2021, 31, 137-150.	2.5	15
3	Dermatan sulphate promotes neuronal differentiation in mouse and human stem cells. Journal of Biochemistry, 2021, 169, 55-64.	1.7	11
4	Hyaluronan degradation and release of a hyaluronan-aggrecan complex from perineuronal nets in the aged mouse brain. Biochimica Et Biophysica Acta - General Subjects, 2021, 1865, 129804.	2.4	15
5	Congenital Disorders of Deficiency in Glycosaminoglycan Biosynthesis. Frontiers in Genetics, 2021, 12, 717535.	2.3	19
6	Mannose and phosphomannose isomerase regulate energy metabolism under glucose starvation in leukemia. Cancer Science, 2021, 112, 4944-4956.	3.9	18
7	Myopathy Associated With Dermatan Sulfate-Deficient Decorin and Myostatin in Musculocontractural Ehlers-Danlos Syndrome: A Mouse Model Investigation. Frontiers in Cell and Developmental Biology, 2021, 9, 695021.	3.7	5
8	An Overview of in vivo Functions of Chondroitin Sulfate and Dermatan Sulfate Revealed by Their Deficient Mice. Frontiers in Cell and Developmental Biology, 2021, 9, 764781.	3.7	17
9	Muscle pathophysiology in mouse models of musculocontractural Ehlers-Danlos syndrome due to CHST14 mutations (mcEDS-CHST14), generated through CRISPR/Cas9-mediated genomic editing. DMM Disease Models and Mechanisms, 2021, , .	2.4	11
10	Recent Advances in the Pathophysiology of Musculocontractural Ehlers-Danlos Syndrome. Genes, 2020, 11, 43.	2.4	24
11	CSGALNACT1â€congenital disorder of glycosylation: A mild skeletal dysplasia with advanced bone age. Human Mutation, 2020, 41, 655-667.	2.5	15
12	Exogenous Application of Proteoglycan to the Cell Surface Microenvironment Facilitates to Chondrogenic Differentiation and Maintenance. International Journal of Molecular Sciences, 2020, 21, 7744.	4.1	3
13	Specific functions of Exostosin-like 3 (EXTL3) gene products. Cellular and Molecular Biology Letters, 2020, 25, 39.	7.0	14
14	b3galt6 Knock-Out Zebrafish Recapitulate β3GalT6-Deficiency Disorders in Human and Reveal a Trisaccharide Proteoglycan Linkage Region. Frontiers in Cell and Developmental Biology, 2020, 8, 597857.	3.7	11
15	Pseudodiastrophic dysplasia expands the known phenotypic spectrum of defects in proteoglycan biosynthesis. Journal of Medical Genetics, 2020, 57, 454-460.	3.2	8
16	Delineation of musculocontractural Ehlers–Danlos Syndrome caused by dermatan sulfate epimerase deficiency. Molecular Genetics & Genomic Medicine, 2020, 8, e1197.	1.2	18
17	Congenital Disorders Caused by Defects in Anabolism of Glycosaminoglycans. Trends in Glycoscience and Glycotechnology, 2020, 32, J43-J49.	0.1	0
18	Congenital Disorders Caused by Defects in Catabolism of Glycosaminoglycans. Trends in Glycoscience and Glycotechnology, 2020, 32, E127-E133.	0.1	0

Shuhei Yamada

#	Article	IF	CITATIONS
19	Congenital Disorders Caused by Defects in Catabolism of Glycosaminoglycans. Trends in Glycoscience and Glycotechnology, 2020, 32, J105-J110.	0.1	0
20	Congenital Disorders Caused by Defects in Anabolism of Glycosaminoglycans. Trends in Glycoscience and Glycotechnology, 2020, 32, E45-E51.	0.1	2
21	Compositional analysis of the glycosaminoglycan family in velvet antlers of Sika deer (Cervus nippon) at different growing stages. Glycoconjugate Journal, 2019, 36, 127-139.	2.7	7
22	Structural alteration of glycosaminoglycan side chains and spatial disorganization of collagen networks in the skin of patients with mcEDS-CHST14. Biochimica Et Biophysica Acta - General Subjects, 2019, 1863, 623-631.	2.4	26
23	Hyaluronidase-4 is produced by mast cells and can cleave serglycin chondroitin sulfate chains into lower molecular weight forms. Journal of Biological Chemistry, 2019, 294, 11458-11472.	3.4	14
24	Identification of novel LFNG mutations in spondylocostal dysostosis. Journal of Human Genetics, 2019, 64, 261-264.	2.3	17
25	Importance of the Fine Structure of Glycolsaminoglycans. Trends in Glycoscience and Glycotechnology, 2019, 31, SJ44-SJ45.	0.1	Ο
26	Importance of the Fine Structure of Glycolsaminoglycans. Trends in Glycoscience and Glycotechnology, 2019, 31, SE44-SE45.	0.1	1
27	Vascular abnormalities in the placenta of Chst14â^'/â^' fetuses: implications in the pathophysiology of perinatal lethality of the murine model and vascular lesions in human CHST14/D4ST1 deficiency. Glycobiology, 2018, 28, 80-89.	2.5	20
28	The reduction of heparan sulphate in the glomerular basement membrane does not augment urinary albumin excretion. Nephrology Dialysis Transplantation, 2018, 33, 26-33.	0.7	11
29	Effects of heparan sulfate proteoglycan syndecan-4 on the insulin secretory response in a mouse pancreatic β-cell line, MIN6. Molecular and Cellular Endocrinology, 2018, 470, 142-150.	3.2	9
30	Screening of known disease genes in congenital scoliosis. Molecular Genetics & Genomic Medicine, 2018, 6, 966-974.	1.2	20
31	Plasma mannose level, a putative indicator of glycogenolysis, and glucose tolerance in Japanese individuals. Journal of Diabetes Investigation, 2017, 8, 489-495.	2.4	11
32	Defect in dermatan sulfate in urine of patients with Ehlers-Danlos syndrome caused by a CHST14/D4ST1 deficiency. Clinical Biochemistry, 2017, 50, 670-677.	1.9	25
33	Identification of biallelic EXTL3 mutations in a novel type of spondylo-epi-metaphyseal dysplasia. Journal of Human Genetics, 2017, 62, 797-801.	2.3	35
34	Roles of two types of heparan sulfate clusters in Wnt distribution and signaling in Xenopus. Nature Communications, 2017, 8, 1973.	12.8	38
35	Chondroitin Sulfate <i>N</i> -acetylgalactosaminyltransferase-1 (CSGalNAcT-1) Deficiency Results in a Mild Skeletal Dysplasia and Joint Laxity. Human Mutation, 2017, 38, 34-38.	2.5	22
36	Pathophysiological Significance of Dermatan Sulfate Proteoglycans Revealed by Human Genetic Disorders. Pharmaceuticals, 2017, 10, 34.	3.8	25

Shuhei Yamada

#	Article	IF	CITATIONS
37	Novel Adamantanyl-Based Thiadiazolyl Pyrazoles Targeting EGFR in Triple-Negative Breast Cancer. ACS Omega, 2016, 1, 1412-1424.	3.5	43
38	Functional validation of novel compound heterozygous variants in B3GAT3 resulting in severe osteopenia and fractures: expanding the disease phenotype. BMC Medical Genetics, 2016, 17, 86.	2.1	22
39	Mutations in Biosynthetic Enzymes for the Protein Linker Region of Chondroitin/Dermatan/Heparan Sulfate Cause Skeletal and Skin Dysplasias. BioMed Research International, 2015, 2015, 1-7.	1.9	25
40	Molecular interactions between chondroitin–dermatan sulfate and growth factors/receptors/matrix proteins. Current Opinion in Structural Biology, 2015, 34, 35-42.	5.7	179
41	Role of Hyaluronidases in the Catabolism of Chondroitin Sulfate. Advances in Experimental Medicine and Biology, 2015, 842, 185-197.	1.6	8
42	Human Genetic Disorders and Knockout Mice Deficient in Glycosaminoglycan. BioMed Research International, 2014, 2014, 1-24.	1.9	45
43	[Review: Symposium on Amylases and Related Enzymes] Novel Chondroitin Sulfate-Specific Hydrolases. Bulletin of Applied Glycoscience, 2012, 2, 104-110.	0.0	Ο
44	A response to: Loss of dermatan-4-sulfotransferase 1 (D4ST1/CHST14) function represents the first dermatan sulfate biosynthesis defect, "dermatan sulfate-deficient Adducted Thumb-Clubfoot Syndrome― Which name is appropriate, "Adducted Thumb-Clubfoot Synd. Human Mutation, 2011, 32, 1507-1509.	2.5	21
45	Loss-of-function mutations of CHST14 in a new type of Ehlers-Danlos syndrome. Human Mutation, 2010, 31, 966-974.	2.5	137
46	Important role of heparan sulfate in postnatal islet growth and insulin secretion. Biochemical and Biophysical Research Communications, 2009, 383, 113-118.	2.1	77
47	Spondyloepiphyseal dysplasia, Omani type: Further definition of the phenotype. American Journal of Medical Genetics, Part A, 2008, 146A, 2376-2384.	1.2	48
48	Embryonic Fibroblasts with a Gene Trap Mutation in Ext1 Produce Short Heparan Sulfate Chains. Journal of Biological Chemistry, 2004, 279, 32134-32141.	3.4	52