Lluis Fajas

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3009926/publications.pdf

Version: 2024-02-01

54	3,844	30	53
papers	citations	h-index	g-index
59	59	59	6255 citing authors
all docs	docs citations	times ranked	

#	Article	IF	CITATIONS
1	Adipocyteâ€specific CDK7 ablation leads to progressive loss of adipose tissue and metabolic dysfunction. FEBS Letters, 2022, 596, 1434-1444.	2.8	O
2	The Intricate Interplay between Cell Cycle Regulators and Autophagy in Cancer. Cancers, 2022, 14, 153.	3.7	10
3	Glucose Starvation or Pyruvate Dehydrogenase Activation Induce a Broad, ERK5-Mediated, Metabolic Remodeling Leading to Fatty Acid Oxidation. Cells, 2022, 11, 1392.	4.1	1
4	The multifaceted role of cell cycle regulators in the coordination of growth and metabolism. FEBS Journal, 2021, 288, 3813-3833.	4.7	33
5	Enforced PGC-1α expression promotes CD8 T cell fitness, memory formation and antitumor immunity. Cellular and Molecular Immunology, 2021, 18, 1761-1771.	10.5	73
6	The multifunctional protein E4F1 links P53 to lipid metabolism in adipocytes. Nature Communications, 2021, 12, 7037.	12.8	15
7	PamgeneAnalyzeR: open and reproducible pipeline for kinase profiling. Bioinformatics, 2020, 36, 5117-5119.	4.1	3
8	Hypothalamic <scp>CDK</scp> 4 regulates thermogenesis by modulating sympathetic innervation of adipose tissues. EMBO Reports, 2020, 21, e49807.	4.5	12
9	Tumor regression and resistance mechanisms upon CDK4 and RAF1 inactivation in KRAS/P53 mutant lung adenocarcinomas. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 24415-24426.	7.1	15
10	CDK7 Mediates the Beta-Adrenergic Signaling in Thermogenic Brown and White Adipose Tissues. IScience, 2020, 23, 101163.	4.1	8
11	Cell cycle regulators in cancer cell metabolism. Biochimica Et Biophysica Acta - Molecular Basis of Disease, 2020, 1866, 165715.	3.8	110
12	CDK4 Regulates Lysosomal Function and mTORC1 Activation to Promote Cancer Cell Survival. Cancer Research, 2019, 79, 5245-5259.	0.9	35
13	Interâ€organ communication: a gatekeeper for metabolic health. EMBO Reports, 2019, 20, e47903.	4.5	94
14	Human adipose tissue H3K4me3 histone mark in adipogenic, lipid metabolism and inflammatory genes is positively associated with BMI and HOMA-IR. PLoS ONE, 2019, 14, e0215083.	2.5	33
15	CDK4, a new metabolic sensor that antagonizes AMPK. Molecular and Cellular Oncology, 2018, 5, e1409862.	0.7	5
16	E2F1 promotes hepatic gluconeogenesis and contributes to hyperglycemia during diabetes. Molecular Metabolism, 2018, 11, 104-112.	6.5	25
17	Role of cell cycle regulators in adipose tissue and whole body energy homeostasis. Cellular and Molecular Life Sciences, 2018, 75, 975-987.	5.4	30
18	Cdkn2a deficiency promotes adipose tissue browning. Molecular Metabolism, 2018, 8, 65-76.	6.5	35

#	Article	lF	Citations
19	Dietary Fiber Confers Protection against Flu by Shaping Ly6câ ⁻ Patrolling Monocyte Hematopoiesis and CD8+ T Cell Metabolism. Immunity, 2018, 48, 992-1005.e8.	14.3	441
20	\hat{l}^2 -Klotho deficiency shifts the gut-liver bile acid axis and induces hepatic alterations in mice. American Journal of Physiology - Endocrinology and Metabolism, 2018, 315, E833-E847.	3.5	13
21	Chromatin immunoprecipitation improvements for the processing of small frozen pieces of adipose tissue. PLoS ONE, 2018, 13, e0192314.	2.5	6
22	Growth factor receptor binding protein 14 inhibition triggers insulinâ€induced mouse hepatocyte proliferation and is associated with hepatocellular carcinoma. Hepatology, 2017, 65, 1352-1368.	7.3	17
23	CDK4 Phosphorylates AMPKα2 to Inhibit Its Activity and Repress Fatty Acid Oxidation. Molecular Cell, 2017, 68, 336-349.e6.	9.7	55
24	The PDK1 Inhibitor Dichloroacetate Controls Cholesterol Homeostasis Through the ERK5/MEF2 Pathway. Scientific Reports, 2017, 7, 10654.	3.3	23
25	E2F1, a Novel Regulator of Metabolism. Frontiers in Endocrinology, 2017, 8, 311.	3.5	154
26	Cancer: Linking Powerhouses to Suicidal Bags. Frontiers in Oncology, 2017, 7, 204.	2.8	15
27	E2F1 inhibits circulating cholesterol clearance by regulating Pcsk9 expression in the liver. JCI Insight, 2017, 2, .	5.0	39
28	$\hat{l}^2\text{-Klotho}$ deficiency protects against obesity through a crosstalk between liver, microbiota, and brown adipose tissue. JCl Insight, 2017, 2, .	5.0	41
29	KAT2B Is Required for Pancreatic Beta Cell Adaptation to Metabolic Stress by Controlling the Unfolded Protein Response. Cell Reports, 2016, 15, 1051-1061.	6.4	22
30	Mammalian Target of Rapamycin Complex 2 Controls CD8ÂT Cell Memory Differentiation in a Foxo1-Dependent Manner. Cell Reports, 2016, 14, 1206-1217.	6.4	111
31	Modulation of mTOR Signalling Triggers the Formation of Stem Cell-like Memory T Cells. EBioMedicine, 2016, 4, 50-61.	6.1	89
32	Retinoblastoma Protein Knockdown Favors Oxidative Metabolism and Glucose and Fatty Acid Disposal in Muscle Cells. Journal of Cellular Physiology, 2016, 231, 708-718.	4.1	10
33	E2F1 mediates sustained lipogenesis and contributes to hepatic steatosis. Journal of Clinical Investigation, 2015, 126, 137-150.	8.2	104
34	Metabolic adaptation to cancer growth: From the cell to the organism. Cancer Letters, 2015, 356, 171-175.	7.2	21
35	Cell cycle regulation of mitochondrial function. Current Opinion in Cell Biology, 2015, 33, 19-25.	5.4	89
36	CDK4 is an essential insulin effector in adipocytes. Journal of Clinical Investigation, 2015, 126, 335-348.	8.2	65

#	Article	IF	CITATIONS
37	Antagonistic functions of <i> <scp>LMNA</scp> </i> isoforms in energy expenditure and lifespan. EMBO Reports, 2014, 15, 529-539.	4.5	47
38	Extracellular-signal-regulated kinase 5 modulates the antioxidant response by transcriptionally controlling Sirtuin 1 expression in leukemic cells. International Journal of Biochemistry and Cell Biology, 2014, 53, 253-261.	2.8	19
39	Metabolic control in cancer cells. Annales D'Endocrinologie, 2013, 74, 71-73.	1.4	9
40	Re-thinking cell cycle regulators: the cross-talk with metabolism. Frontiers in Oncology, 2013, 3, 4.	2.8	65
41	E2F transcription factor-1 regulates oxidative metabolism. Nature Cell Biology, 2011, 13, 1146-1152.	10.3	222
42	Cycling through metabolism. EMBO Molecular Medicine, 2010, 2, 338-348.	6.9	78
43	Abrogation of <i>De novo</i> Lipogenesis by Stearoyl-CoA Desaturase 1 Inhibition Interferes with Oncogenic Signaling and Blocks Prostate Cancer Progression in Mice. Molecular Cancer Therapeutics, 2010, 9, 1740-1754.	4.1	224
44	Cyclin G2 Regulates Adipogenesis through PPARγ Coactivation. Endocrinology, 2010, 151, 5247-5254.	2.8	46
45	The CDK4–pRB–E2F1 pathway controls insulin secretion. Nature Cell Biology, 2009, 11, 1017-1023.	10.3	118
46	Adipose tissue-specific inactivation of the retinoblastoma protein protects against diabesity because of increased energy expenditure. Proceedings of the National Academy of Sciences of the United States of America, 2007, 104, 10703-10708.	7.1	95
47	Peroxisome Proliferator-Activated Receptor \hat{l}^3 Recruits the Positive Transcription Elongation Factor b Complex to Activate Transcription and Promote Adipogenesis. Molecular Endocrinology, 2006, 20, 1494-1505.	3.7	101
48	Cyclin D3 Promotes Adipogenesis through Activation of Peroxisome Proliferator-Activated Receptor \hat{I}^3 . Molecular and Cellular Biology, 2005, 25, 9985-9995.	2.3	117
49	Cdk4 promotes adipogenesis through PPARγ activation. Cell Metabolism, 2005, 2, 239-249.	16.2	136
50	Impaired pancreatic growth, \hat{l}^2 cell mass, and \hat{l}^2 cell function in E2F1 \hat{a} \in "/ \hat{a} mice. Journal of Clinical Investigation, 2004, 113, 1288-1295.	8.2	90
51	E2Fs Regulate Adipocyte Differentiation. Developmental Cell, 2002, 3, 39-49.	7.0	284
52	The Retinoblastoma-Histone Deacetylase 3 Complex Inhibits PPAR \hat{I}^3 and Adipocyte Differentiation. Developmental Cell, 2002, 3, 903-910.	7.0	249
53	Cyclin A Is a Mediator of p120 E4F -Dependent Cell Cycle Arrest in G 1. Molecular and Cellular Biology, 2001, 21, 2956-2966.	2.3	46
54	pRB binds to and modulates the transrepressing activity of the E1A-regulated transcription factor p120E4F. Proceedings of the National Academy of Sciences of the United States of America, 2000, 97, 7738-7743.	7.1	41