Anne Lyytinen

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3008581/publications.pdf

Version: 2024-02-01

331670 477307 1,795 29 21 29 h-index citations g-index papers 29 29 29 1422 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Responses of a native plant species from invaded and uninvaded areas to allelopathic effects of an invader. Ecology and Evolution, 2019, 9, 6116-6123.	1.9	11
2	Is a change in juvenile hormone sensitivity involved in range expansion in an invasive beetle?. Frontiers in Zoology, 2015, 12, 20.	2.0	2
3	Latitudinal differences in diapause related photoperiodic responses of European Colorado potato beetles (Leptinotarsa decemlineata). Evolutionary Ecology, 2015, 29, 269-282.	1.2	60
4	Responses in metabolic rate to changes in temperature in diapausing <scp>C</scp> olorado potato beetle <i><scp>L</scp>eptinotarsa decemlineata</i> from three <scp>E</scp> uropean populations. Physiological Entomology, 2015, 40, 123-130.	1.5	37
5	Sublethal effects of deltamethrin exposure of parental generations on physiological traits and overwintering in <i><scp>L</scp>eptinotarsa decemlineata</i> . Journal of Applied Entomology, 2014, 138, 149-158.	1.8	23
6	Northward range expansion requires synchronization of both overwintering behaviour and physiology with photoperiod in the invasive Colorado potato beetle (Leptinotarsa decemlineata). Oecologia, 2014, 176, 57-68.	2.0	53
7	Stress for invasion success? Temperature stress of preceding generations modifies the response to insecticide stress in an invasive pest insect. Evolutionary Applications, 2013, 6, 313-323.	3.1	22
8	Pre-invasion history and demography shape the genetic variation in the insecticide resistance-related acetylcholinesterase 2 gene in the invasive Colorado potato beetle. BMC Evolutionary Biology, 2013, 13, 13.	3.2	38
9	Variation in Hsp70 Levels after Cold Shock: Signs of Evolutionary Responses to Thermal Selection among Leptinotarsa decemlineata Populations. PLoS ONE, 2012, 7, e31446.	2.5	35
10	Population dependent effects of photoperiod on diapause related physiological traits in an invasive beetle (Leptinotarsa decemlineata). Journal of Insect Physiology, 2012, 58, 1146-1158.	2.0	32
11	Energy use, diapause behaviour and northern range expansion potential in the invasive Colorado potato beetle. Functional Ecology, 2011, 25, 527-536.	3.6	70
12	Resting metabolic rate can vary with age independently from body mass changes in the Colorado potato beetle, Leptinotarsa decemlineata. Journal of Insect Physiology, 2010, 56, 277-282.	2.0	17
13	Cold tolerance during larval development: effects on the thermal distribution limits of <i>Leptinotarsa decemlineata </i>	1.4	20
14	Quantitative genetic approach for assessing invasiveness: geographic and genetic variation in life-history traits. Biological Invasions, 2008, 10, 1135-1145.	2.4	39
15	Genetic variation in growth and development time under two selection regimes in <i>Leptinotarsa decemlineata</i> . Entomologia Experimentalis Et Applicata, 2008, 127, 157-167.	1.4	20
16	Variability in host plant chemistry: behavioural responses and life-history parameters of the Colorado potato beetle (Leptinotarsa decemlineata). Chemoecology, 2007, 17, 51-56.	1.1	15
17	Negatively condition dependent predation cost of a positively condition dependent sexual signalling. Journal of Evolutionary Biology, 2006, 19, 649-656.	1.7	34
18	Relative importance of taste and visual appearance for predator education in MÃ $^1\!4$ llerian mimicry. Animal Behaviour, 2006, 72, 323-333.	1.9	43

#	Article	IF	CITATION
19	The voyage of an invasive species across continents: genetic diversity of North American and European Colorado potato beetle populations. Molecular Ecology, 2005, 14, 4207-4219.	3.9	221
20	Does predation maintain eyespot plasticity in Bicyclus anynana?. Proceedings of the Royal Society B: Biological Sciences, 2004, 271, 279-283.	2.6	188
21	The importance of pattern similarity between M $\tilde{A}^{1}/4$ llerian mimics in predator avoidance learning. Proceedings of the Royal Society B: Biological Sciences, 2004, 271, 407-413.	2.6	89
22	THE EFFECT OF ALTERNATIVE PREY ON THE DYNAMICS OF IMPERFECT BATESIAN AND MÜLLERIAN MIMICRIES. Evolution; International Journal of Organic Evolution, 2004, 58, 1294-1302.	2.3	77
23	Ultraviolet reflection and predation risk in diurnal and nocturnal Lepidoptera. Behavioral Ecology, 2004, 15, 982-987.	2.2	42
24	Significance of butterfly eyespots as an anti-predator device in ground-based and aerial attacks. Oikos, 2003, 100, 373-379.	2.7	101
25	Predator experience on cryptic prey affects the survival of conspicuous aposematic prey. Proceedings of the Royal Society B: Biological Sciences, 2001, 268, 357-361.	2.6	100
26	Can ultraviolet cues function as aposematic signals?. Behavioral Ecology, 2001, 12, 65-70.	2.2	45
27	Strong antiapostatic selection against novel rare aposematic prey. Proceedings of the National Academy of Sciences of the United States of America, 2001, 98, 9181-9184.	7.1	166
28	Selection for cryptic coloration in a visually heterogeneous habitat. Proceedings of the Royal Society B: Biological Sciences, 2001, 268, 1925-1929.	2.6	171
29	Are European White Butterflies Aposematic?. Evolutionary Ecology, 1999, 13, 709.	1.2	24