Chris I De Zeeuw

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/300761/publications.pdf

Version: 2024-02-01

270 papers

20,621 citations

7568 77 h-index 127 g-index

291 all docs

291 docs citations

times ranked

291

17630 citing authors

#	Article	IF	Citations
1	Visualization of Microtubule Growth in Cultured Neurons via the Use of EB3-GFP (End-Binding Protein) Tj ETQq $1\ 1$	0.784314 3.6	rgBT /Ov <mark>erl</mark>
2	CLASPs Are CLIP-115 and -170 Associating Proteins Involved in the Regional Regulation of Microtubule Dynamics in Motile Fibroblasts. Cell, 2001, 104, 923-935.	28.9	462
3	Distributed synergistic plasticity and cerebellar learning. Nature Reviews Neuroscience, 2012, 13, 619-635.	10.2	429
4	Paraneoplastic Cerebellar Ataxia Due to Autoantibodies against a Glutamate Receptor. New England Journal of Medicine, 2000, 342, 21-27.	27.0	412
5	Expression of a Protein Kinase C Inhibitor in Purkinje Cells Blocks Cerebellar LTD and Adaptation of the Vestibulo-Ocular Reflex. Neuron, 1998, 20, 495-508.	8.1	383
6	Bidirectional Parallel Fiber Plasticity in the Cerebellum under Climbing Fiber Control. Neuron, 2004, 44, 691-700.	8.1	381
7	Spatiotemporal firing patterns in the cerebellum. Nature Reviews Neuroscience, 2011, 12, 327-344.	10.2	373
8	Bicaudal-D regulates COPI-independent Golgi–ER transport by recruiting the dynein–dynactin motor complex. Nature Cell Biology, 2002, 4, 986-992.	10.3	357
9	A Cre-Dependent GCaMP3 Reporter Mouse for Neuronal Imaging (i>In Vivo (i>. Journal of Neuroscience, 2012, 32, 3131-3141.	3.6	341
10	A cortico-cerebellar loop for motor planning. Nature, 2018, 563, 113-116.	27.8	321
11	Rescue of behavioral phenotype and neuronal protrusion morphology in Fmr1 KO mice. Neurobiology of Disease, 2008, 31, 127-132.	4.4	296
12	Reevaluating the Role of LTD in Cerebellar Motor Learning. Neuron, 2011, 70, 43-50.	8.1	291
13	Timing and plasticity in the cerebellum: focus on the granular layer. Trends in Neurosciences, 2009, 32, 30-40.	8.6	288
14	Shared Synaptic Pathophysiology in Syndromic and Nonsyndromic Rodent Models of Autism. Science, 2012, 338, 128-132.	12.6	278
15	Synaptic inhibition of Purkinje cells mediates consolidation of vestibulo-cerebellar motor learning. Nature Neuroscience, 2009, 12, 1042-1049.	14.8	268
16	Transcription factor GATA-3 alters pathway selection of olivocochlear neurons and affects morphogenesis of the ear. Journal of Comparative Neurology, 2001, 429, 615-630.	1.6	263
17	Cerebellar modules operate at different frequencies. ELife, 2014, 3, e02536.	6.0	254
18	Activity-based protein profiling reveals off-target proteins of the FAAH inhibitor BIA 10-2474. Science, 2017, 356, 1084-1087.	12.6	251

#	Article	lF	CITATIONS
19	L1 knockout mice show dilated ventricles, vermis hypoplasia and impaired exploration patterns. Human Molecular Genetics, 1998, 7, 999-1009.	2.9	228
20	Neuron-Specific Expression of Mutant Superoxide Dismutase Is Sufficient to Induce Amyotrophic Lateral Sclerosis in Transgenic Mice. Journal of Neuroscience, 2008, 28, 2075-2088.	3.6	219
21	Time and tide in cerebellar memory formation. Current Opinion in Neurobiology, 2005, 15, 667-674.	4.2	213
22	Anatomical Pathways Involved in Generating and Sensing Rhythmic Whisker Movements. Frontiers in Integrative Neuroscience, 2011, 5, 53.	2.1	211
23	High cortical spreading depression susceptibility and migraineâ€associated symptoms in Ca _v 2.1 S218L mice. Annals of Neurology, 2010, 67, 85-98.	5.3	206
24	î±CaMKII Is Essential for Cerebellar LTD and Motor Learning. Neuron, 2006, 51, 835-843.	8.1	203
25	Evolving Models of Pavlovian Conditioning: Cerebellar Cortical Dynamics in Awake Behaving Mice. Cell Reports, 2015, 13, 1977-1988.	6.4	203
26	Role of Olivary Electrical Coupling in Cerebellar Motor Learning. Neuron, 2008, 58, 599-612.	8.1	199
27	Bicaudal D induces selective dynein-mediated microtubule minus end-directed transport. EMBO Journal, 2003, 22, 6004-6015.	7.8	196
28	Bergmann Glial AMPA Receptors Are Required for Fine Motor Coordination. Science, 2012, 337, 749-753.	12.6	191
29	Elimination of Inhibitory Synapses Is a Major Component of Adult Ocular Dominance Plasticity. Neuron, 2012, 74, 374-383.	8.1	188
30	Cerebellar granule cells acquire a widespread predictive feedback signal during motor learning. Nature Neuroscience, 2017, 20, 727-734.	14.8	182
31	Dysfunctional cerebellar Purkinje cells contribute to autism-like behaviour in Shank2-deficient mice. Nature Communications, 2016, 7, 12627.	12.8	180
32	Effect of Simvastatin on Cognitive Functioning in Children With Neurofibromatosis Type 1. JAMA - Journal of the American Medical Association, 2008, 300, 287.	7.4	175
33	Motor Learning and the Cerebellum. Cold Spring Harbor Perspectives in Biology, 2015, 7, a021683.	5.5	175
34	Modulation of Presynaptic Plasticity and Learning by the H-ras/Extracellular Signal-Regulated Kinase/Synapsin I Signaling Pathway. Journal of Neuroscience, 2005, 25, 9721-9734.	3.6	170
35	Mechanisms underlying cerebellar motor deficits due to mGluR1-autoantibodies. Annals of Neurology, 2003, 53, 325-336.	5.3	169
36	Targeted mutation of Cyln2 in the Williams syndrome critical region links CLIP-115 haploinsufficiency to neurodevelopmental abnormalities in mice. Nature Genetics, 2002, 32, 116-127.	21.4	163

3

#	Article	IF	CITATIONS
37	High Bandwidth Synaptic Communication and Frequency Tracking in Human Neocortex. PLoS Biology, 2014, 12, e1002007.	5.6	163
38	Cerebellar LTD and Pattern Recognition by Purkinje Cells. Neuron, 2007, 54, 121-136.	8.1	161
39	Olivary projecting neurons in the nucleus of Darkschewitsch in the cat receive excitatory monosynaptic input from the cerebellar nuclei. Brain Research, 1994, 653, 345-350.	2.2	158
40	Calbindin in Cerebellar Purkinje Cells Is a Critical Determinant of the Precision of Motor Coordination. Journal of Neuroscience, 2003, 23, 3469-3477.	3.6	158
41	GATA-3 Is Involved in the Development of Serotonergic Neurons in the Caudal Raphe Nuclei. Journal of Neuroscience, 1999, 19, RC12-RC12.	3.6	141
42	Excitatory Cerebellar Nucleocortical Circuit Provides Internal Amplification during Associative Conditioning. Neuron, 2016, 89, 645-657.	8.1	141
43	Deformation of Network Connectivity in the Inferior Olive of Connexin 36-Deficient Mice Is Compensated by Morphological and Electrophysiological Changes at the Single Neuron Level. Journal of Neuroscience, 2003, 23, 4700-4711.	3.6	140
44	The Making of a Complex Spike: Ionic Composition and Plasticity. Annals of the New York Academy of Sciences, 2002, 978, 359-390.	3.8	139
45	Intrinsic Plasticity Complements Long-Term Potentiation in Parallel Fiber Input Gain Control in Cerebellar Purkinje Cells. Journal of Neuroscience, 2010, 30, 13630-13643.	3.6	139
46	Impairment of LTD and cerebellar learning by Purkinje cell–specific ablation of cGMP-dependent protein kinase I. Journal of Cell Biology, 2003, 163, 295-302.	5.2	136
47	Visuomotor Cerebellum in Human and Nonhuman Primates. Cerebellum, 2012, 11, 392-410.	2.5	136
48	Strength and timing of motor responses mediated by rebound firing in the cerebellar nuclei after Purkinje cell activation. Frontiers in Neural Circuits, 2013, 7, 133.	2.8	135
49	Differential olivo-cerebellar cortical control of rebound activity in the cerebellar nuclei. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 8410-8415.	7.1	134
50	Silencing the Majority of Cerebellar Granule Cells Uncovers Their Essential Role in Motor Learning and Consolidation. Cell Reports, 2013, 3, 1239-1251.	6.4	134
51	The Sleeping Cerebellum. Trends in Neurosciences, 2017, 40, 309-323.	8.6	127
52	Purkinje cells in awake behaving animals operate at the upstate membrane potential. Nature Neuroscience, 2006, 9, 459-461.	14.8	125
53	Endocochlear potential depends on Clâ^ channels: mechanism underlying deafness in Bartter syndrome IV. EMBO Journal, 2008, 27, 2907-2917.	7.8	123
54	Cerebellar output controls generalized spikeâ€andâ€wave discharge occurrence. Annals of Neurology, 2015, 77, 1027-1049.	5.3	123

#	Article	IF	CITATIONS
55	Cerebellar molecular layer interneurons $\hat{a}\in$ computational properties and roles in learning. Trends in Neurosciences, 2010, 33, 524-532.	8.6	121
56	The human cerebellum has almost 80% of the surface area of the neocortex. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 19538-19543.	7.1	117
57	βCaMKII controls the direction of plasticity at parallel fiber–Purkinje cell synapses. Nature Neuroscience, 2009, 12, 823-825.	14.8	116
58	fMRI Activities in the Emotional Cerebellum: A Preference for Negative Stimuli and Goal-Directed Behavior. Cerebellum, 2012, 11, 233-245.	2.5	115
59	Climbing Fiber Input Shapes Reciprocity of Purkinje Cell Firing. Neuron, 2013, 78, 700-713.	8.1	115
60	Expression pattern of lacZ reporter gene representing connexin36 in transgenic mice. Journal of Comparative Neurology, 2004, 473, 511-525.	1.6	114
61	Diversity and dynamism in the cerebellum. Nature Neuroscience, 2021, 24, 160-167.	14.8	114
62	Phosphatidylserine plasma membrane asymmetry in vivo: a pancellular phenomenon which alters during apoptosis. Cell Death and Differentiation, 1997, 4, 311-316.	11.2	112
63	Cerebellar control of gait and interlimb coordination. Brain Structure and Function, 2015, 220, 3513-3536.	2.3	109
64	Regular Patterns in Cerebellar Purkinje Cell Simple Spike Trains. PLoS ONE, 2007, 2, e485.	2.5	107
65	NINscope, a versatile miniscope for multi-region circuit investigations. ELife, 2020, 9, .	6.0	107
66	Familial Alzheimer's disease–associated presenilin-1 alters cerebellar activity and calcium homeostasis. Journal of Clinical Investigation, 2014, 124, 1552-1567.	8.2	104
67	Role of Synchronous Activation of Cerebellar Purkinje Cell Ensembles in Multi-joint Movement Control. Current Biology, 2015, 25, 1157-1165.	3.9	103
68	In Situ detection of apoptosis during embryogenesis with Annexin V: From whole mount to ultrastructure., 1997, 29, 313-320.		100
69	Encoding of whisker input by cerebellar Purkinje cells. Journal of Physiology, 2010, 588, 3757-3783.	2.9	100
70	CLIP-115, a Novel Brain-Specific Cytoplasmic Linker Protein, Mediates the Localization of Dendritic Lamellar Bodies. Neuron, 1997, 19, 1187-1199.	8.1	97
71	Motor Learning Requires Purkinje Cell Synaptic Potentiation through Activation of AMPA-Receptor Subunit GluA3. Neuron, 2017, 93, 409-424.	8.1	93
72	Dynamic modulation of activity in cerebellar nuclei neurons during pavlovian eyeblink conditioning in mice. ELife, 2017, 6, .	6.0	90

#	Article	IF	Citations
73	The Roles of the Olivocerebellar Pathway in Motor Learning and Motor Control. A Consensus Paper. Cerebellum, 2017, 16, 230-252.	2.5	89
74	Zonal organization of the mouse flocculus: Physiology, input, and output. Journal of Comparative Neurology, 2006, 497, 670-682.	1.6	88
75	Don't get too excited: mechanisms of glutamate-mediated Purkinje cell death. Progress in Brain Research, 2005, 148, 367-390.	1.4	87
76	Cerebellar and extracerebellar involvement in mouse eyeblink conditioning: the ACDC model. Frontiers in Cellular Neuroscience, 2010, 3, 19.	3.7	87
77	Spatial navigation impairment in mice lacking cerebellar LTD: a motor adaptation deficit?. Nature Neuroscience, 2005, 8, 1292-1294.	14.8	86
78	Causes and Consequences of Oscillations in the Cerebellar Cortex. Neuron, 2008, 58, 655-658.	8.1	85
79	Genetic Dissection of the Function of Hindbrain Axonal Commissures. PLoS Biology, 2010, 8, e1000325.	5. 6	85
80	Formation of microtubule-based traps controls the sorting and concentration of vesicles to restricted sites of regenerating neurons after axotomy. Journal of Cell Biology, 2007, 176, 497-507.	5.2	84
81	Cerebellar Ataxia by Enhanced Ca _V 2.1 Currents Is Alleviated by Ca ²⁺ -Dependent K ⁺ -Channel Activators in <i>Cacna1a</i> ^{S218L} Mutant Mice. Journal of Neuroscience, 2012, 32, 15533-15546.	3.6	84
82	LIMK1 and CLIP-115: linking cytoskeletal defects to Williams syndrome. BioEssays, 2004, 26, 141-150.	2.5	83
83	Climbing Fiber Burst Size and Olivary Sub-threshold Oscillations in a Network Setting. PLoS Computational Biology, 2012, 8, e1002814.	3.2	83
84	Hearing loss following Gata3 haploinsufficiency is caused by cochlear disorder. Neurobiology of Disease, 2004, 16, 169-178.	4.4	81
85	Bidirectional learning in upbound and downbound microzones of the cerebellum. Nature Reviews Neuroscience, 2021, 22, 92-110.	10.2	81
86	Eye Movements of the Murine P/Q Calcium Channel Mutant Tottering, and the Impact of Aging. Journal of Neurophysiology, 2006, 95, 1588-1607.	1.8	80
87	Repeated mild injury causes cumulative damage to hippocampal cells. Brain, 2002, 125, 2699-2709.	7.6	79
88	An Xpd mouse model for the combined xeroderma pigmentosum/Cockayne syndrome exhibiting both cancer predisposition and segmental progeria. Cancer Cell, 2006, 10, 121-132.	16.8	78
89	Estradiol Improves Cerebellar Memory Formation by Activating Estrogen Receptor \hat{l}^2 . Journal of Neuroscience, 2007, 27, 10832-10839.	3.6	77
90	Controlling Cerebellar Output to Treat Refractory Epilepsy. Trends in Neurosciences, 2015, 38, 787-799.	8.6	77

#	Article	IF	CITATIONS
91	Axonal Sprouting and Formation of Terminals in the Adult Cerebellum during Associative Motor Learning. Journal of Neuroscience, 2013, 33, 17897-17907.	3.6	76
92	Regional functionality of the cerebellum. Current Opinion in Neurobiology, 2015, 33, 150-155.	4.2	74
93	Raising cytosolic Cl ^{â^'} in cerebellar granule cells affects their excitability and vestibulo-ocular learning. EMBO Journal, 2012, 31, 1217-1230.	7.8	73
94	Hippocampal–Cerebellar Interaction During Spatio-Temporal Prediction. Cerebral Cortex, 2015, 25, 313-321.	2.9	73
95	Differentiating Cerebellar Impact on Thalamic Nuclei. Cell Reports, 2018, 23, 2690-2704.	6.4	71
96	Alcohol Impairs Long-Term Depression at the Cerebellar Parallel Fiber–Purkinje Cell Synapse. Journal of Neurophysiology, 2008, 100, 3167-3174.	1.8	70
97	Inhibition of Protein Kinase C Prevents Purkinje Cell Death But Does Not Affect Axonal Regeneration. Journal of Neuroscience, 2002, 22, 3531-3542.	3. 6	69
98	High Frequency Burst Firing of Granule Cells Ensures Transmission at the Parallel Fiber to Purkinje Cell Synapse at the Cost of Temporal Coding. Frontiers in Neural Circuits, 2013, 7, 95.	2.8	69
99	T-type channel blockade impairs long-term potentiation at the parallel fiber–Purkinje cell synapse and cerebellar learning. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 20302-20307.	7.1	65
100	Cerebellar plasticity and associative memories are controlled by perineuronal nets. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 6855-6865.	7.1	65
101	Gain adaptation and phase dynamics of compensatory eye movements in mice. Genes and Function, 1997, 1, 175-190.	2.8	64
102	Long-term depression of climbing fiber-evoked calcium transients in Purkinje cell dendrites. Proceedings of the National Academy of Sciences of the United States of America, 2003, 100, 2878-2883.	7.1	64
103	The Neuronal Code(s) of the Cerebellum. Journal of Neuroscience, 2013, 33, 17603-17609.	3. 6	64
104	Behavioral Correlates of Complex Spike Synchrony in Cerebellar Microzones. Journal of Neuroscience, 2014, 34, 8937-8947.	3.6	63
105	Cerebellar Potentiation and Learning a Whisker-Based Object Localization Task with a Time Response Window. Journal of Neuroscience, 2014, 34, 1949-1962.	3 . 6	61
106	Functional Ultrasound (fUS) During Awake Brain Surgery: The Clinical Potential of Intra-Operative Functional and Vascular Brain Mapping. Frontiers in Neuroscience, 2019, 13, 1384.	2.8	61
107	Reducing GBA2 Activity Ameliorates Neuropathology in Niemann-Pick Type C Mice. PLoS ONE, 2015, 10, e0135889.	2.5	61
108	Time window control: a model for cerebellar function based on synchronization, reverberation, and time slicing. Progress in Brain Research, 2000, 124, 275-297.	1.4	60

#	Article	IF	CITATIONS
109	Light Stimulus Frequency Dependence of Activity in the Rat Visual System as Studied With High-Resolution BOLD fMRI. Journal of Neurophysiology, 2006, 95, 3164-3170.	1.8	60
110	Hearing loss in infantile Pompe's disease and determination of underlying pathology in the knockout mouse. Neurobiology of Disease, 2004, 16, 14-20.	4.4	59
111	A Cerebellar Learning Model of Vestibulo-Ocular Reflex Adaptation in Wild-Type and Mutant Mice. Journal of Neuroscience, 2014, 34, 7203-7215.	3.6	59
112	Spinocerebellar Ataxia Type 6 Protein Aggregates Cause Deficits in Motor Learning and Cerebellar Plasticity. Journal of Neuroscience, 2015, 35, 8882-8895.	3.6	59
113	Olivary subthreshold oscillations and burst activity revisited. Frontiers in Neural Circuits, 2012, 6, 91.	2.8	57
114	Potentiation of cerebellar Purkinje cells facilitates whisker reflex adaptation through increased simple spike activity. ELife, $2018, 7, \ldots$	6.0	57
115	The anatomy of fear learning in the cerebellum: A systematic meta-analysis. Neuroscience and Biobehavioral Reviews, 2015, 59, 83-91.	6.1	55
116	A cerebellar mechanism for learning prior distributions of time intervals. Nature Communications, 2018, 9, 469.	12.8	54
117	SK2 channels in cerebellar Purkinje cells contribute to excitability modulation in motor-learning–specific memory traces. PLoS Biology, 2020, 18, e3000596.	5.6	54
118	Adaptive Stress Response in Segmental Progeria Resembles Long-Lived Dwarfism and Calorie Restriction in Mice. PLoS Genetics, 2006, 2, e192.	3.5	53
119	The MurineCYLN2Gene: Genomic Organization, Chromosome Localization, and Comparison to the Human Gene That Is Located within the 7q11.23 Williams Syndrome Critical Region. Genomics, 1998, 53, 348-358.	2.9	52
120	Properties of the Nucleo-Olivary Pathway: An In Vivo Whole-Cell Patch Clamp Study. PLoS ONE, 2012, 7, e46360.	2.5	52
121	Time windows and reverberating loops: a reverse-engineering approach to cerebellar function. Cerebellum, 2003, 2, 44-54.	2.5	51
122	Mechanisms underlying vestibuloâ€eerebellar motor learning in mice depend on movement direction. Journal of Physiology, 2017, 595, 5301-5326.	2.9	51
123	Reversibility of neuropathology and motor deficits in an inducible mouse model for FXTAS. Human Molecular Genetics, 2015, 24, 4948-4957.	2.9	50
124	Spatiotemporal distribution of Connexin45 in the olivocerebellar system. Journal of Comparative Neurology, 2006, 495, 173-184.	1.6	49
125	Changes of Cerebral Blood Flow during the Secondary Expansion of a Cortical Contusion Assessed by ¹⁴ C-lodoantipyrine Autoradiography in Mice Using a Non-Invasive Protocol. Journal of Neurotrauma, 2008, 25, 739-753.	3.4	49
126	Gating of Long-Term Potentiation by Nicotinic Acetylcholine Receptors at the Cerebellum Input Stage. PLoS ONE, 2013, 8, e64828.	2.5	49

#	Article	IF	Citations
127	Impact of parallel fiber to Purkinje cell long-term depression is unmasked in absence of inhibitory input. Science Advances, 2018, 4, eaas9426.	10.3	49
128	Reappraisal of Bergmann glial cells as modulators of cerebellar circuit function. Frontiers in Cellular Neuroscience, 2015, 9, 246.	3.7	48
129	Cerebellar Cortex and Cerebellar Nuclei Are Concomitantly Activated during Eyeblink Conditioning: A 7T fMRI Study in Humans. Journal of Neuroscience, 2015, 35, 1228-1239.	3.6	48
130	Wireless closed-loop optogenetics across the entire dorsoventral spinal cord in mice. Nature Biotechnology, 2022, 40, 198-208.	17.5	48
131	Interaction between Ocular Stabilization Reflexes in Patients with Whiplash Injury., 2006, 47, 2881.		45
132	TRPC3 is a major contributor to functional heterogeneity of cerebellar Purkinje cells. ELife, 2019, 8, .	6.0	45
133	Differential Amplification of Intron-containing Transcripts Reveals Long Term Potentiation-associated Up-regulation of Specific Pde10A Phosphodiesterase Splice Variants. Journal of Biological Chemistry, 2004, 279, 15841-15849.	3.4	43
134	Role of the Cerebellar Cortex in Conditioned Goal-Directed Behavior. Journal of Neuroscience, 2010, 30, 13265-13271.	3.6	43
135	Synaptic Transmission and Plasticity at Inputs to Murine Cerebellar Purkinje Cells Are Largely Dispensable for Standard Nonmotor Tasks. Journal of Neuroscience, 2013, 33, 12599-12618.	3.6	42
136	Dissociation of locomotor and cerebellar deficits in a murine Angelman syndrome model. Journal of Clinical Investigation, 2015, 125, 4305-4315.	8.2	40
137	Altered olivocerebellar activity patterns in the connexin36 knockout mouse. Cerebellum, 2007, 6, 287-299.	2.5	39
138	The Centromeric/Nucleolar Chromatin Protein ZFP-37 May Function to Specify Neuronal Nuclear Domains. Journal of Biological Chemistry, 1998, 273, 9099-9109.	3.4	38
139	Purkinje Cell-Specific Ablation of CaV2.1 Channels is Sufficient to Cause Cerebellar Ataxia in Mice. Cerebellum, 2012, 11, 246-258.	2.5	38
140	Variable timing of synaptic transmission in cerebellar unipolar brush cells. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 5403-5408.	7.1	38
141	Action perception recruits the cerebellum and is impaired in patients with spinocerebellar ataxia. Brain, 2019, 142, 3791-3805.	7.6	38
142	Adaptation of the Cervico- and Vestibulo-Ocular Reflex in Whiplash Injury Patients. Journal of Neurotrauma, 2008, 25, 687-693.	3.4	37
143	The Formation of Hierarchical Decisions in the Visual Cortex. Neuron, 2015, 87, 1344-1356.	8.1	37
144	Nystagmus in patients with congenital stationary night blindness (CSNB) originates from synchronously firing retinal ganglion cells. PLoS Biology, 2019, 17, e3000174.	5.6	37

#	Article	IF	Citations
145	Neurons of the inferior olive respond to broad classes of sensory input while subject to homeostatic control. Journal of Physiology, 2019, 597, 2483-2514.	2.9	37
146	Impact of conventional anesthesia on auditory brainstem responses in mice. Hearing Research, 2004, 193, 75-82.	2.0	36
147	Vestibular Role of KCNQ4 and KCNQ5 K+ Channels Revealed by Mouse Models. Journal of Biological Chemistry, 2013, 288, 9334-9344.	3.4	36
148	Chloride Homeostasis in Neurons With Special Emphasis on the Olivocerebellar System: Differential Roles for Transporters and Channels. Frontiers in Cellular Neuroscience, 2018, 12, 101.	3.7	36
149	Dynamical Working Memory and Timed Responses: The Role of Reverberating Loops in the Olivo-Cerebellar System. Neural Computation, 2002, 14, 2597-2626.	2.2	35
150	Cerebellar perineuronal nets in cocaine-induced pavlovian memory: Site matters. Neuropharmacology, 2017, 125, 166-180.	4.1	35
151	Tactile Stimulation Evokes Long-Lasting Potentiation of Purkinje Cell Discharge In Vivo. Frontiers in Cellular Neuroscience, 2016, 10, 36.	3.7	32
152	Ablation of TFR1 in Purkinje Cells Inhibits mGlu1 Trafficking and Impairs Motor Coordination, But Not Autistic-Like Behaviors. Journal of Neuroscience, 2017, 37, 11335-11352.	3.6	32
153	Whole-Cell Properties of Cerebellar Nuclei Neurons In Vivo. PLoS ONE, 2016, 11, e0165887.	2.5	32
154	Purkinje Cell Input to Cerebellar Nuclei in Tottering: Ultrastructure and Physiology. Cerebellum, 2008, 7, 547-558.	2.5	31
155	Motor Learning in Children with Neurofibromatosis Type I. Cerebellum, 2011, 10, 14-21.	2.5	31
156	Cerebellar Purkinje cells can differentially modulate coherence between sensory and motor cortex depending on region and behavior. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	7.1	31
157	Protein kinase C activity is a protective modifier of Purkinje neuron degeneration in cerebellar ataxia. Human Molecular Genetics, 2018, 27, 1396-1410.	2.9	30
158	Cell death, glial protein alterations and elevated S- $100\hat{1}^2$ release in cerebellar cell cultures following mechanically induced trauma. Neurobiology of Disease, 2004, 15, 563-572.	4.4	29
159	Functional Convergence of Autonomic and Sensorimotor Processing in the Lateral Cerebellum. Cell Reports, 2020, 32, 107867.	6.4	29
160	Otolith Deprivation Induces Optokinetic Compensation. Journal of Neurophysiology, 2005, 94, 3487-3496.	1.8	28
161	Slc26a11 is prominently expressed in the brain and functions as a chloride channel: expression in Purkinje cells and stimulation of V H+-ATPase. Pflugers Archiv European Journal of Physiology, 2013, 465, 1583-1597.	2.8	28
162	Ubiquitin ligase TRIM3 controls hippocampal plasticity and learning by regulating synaptic \hat{l}^3 -actin levels. Journal of Cell Biology, 2015, 211, 569-586.	5.2	28

#	Article	IF	CITATIONS
163	Cerebellar Granule Cells: Dense, Rich and Evolving Representations. Current Biology, 2017, 27, R415-R418.	3.9	28
164	Differential effects of Foxp2 disruption in distinct motor circuits. Molecular Psychiatry, 2019, 24, 447-462.	7.9	28
165	Stress, caffeine and ethanol trigger transient neurological dysfunction through shared mechanisms in a mouse calcium channelopathy. Neurobiology of Disease, 2013, 50, 151-159.	4.4	27
166	Cerebellar motor learning deficits in medicated and medication-free men with recent-onset schizophrenia. Journal of Psychiatry and Neuroscience, 2014, 39, E3-E11.	2.4	27
167	Numb deficiency in cerebellar Purkinje cells impairs synaptic expression of metabotropic glutamate receptor and motor coordination. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, 15474-15479.	7.1	27
168	Circling behavior in theEcl mouse is caused by lateral semicircular canal defects. Journal of Comparative Neurology, 2004, 468, 587-595.	1.6	26
169	STD-Dependent and Independent Encoding of Input Irregularity as Spike Rate in a Computational Model of a Cerebellar Nucleus Neuron. Cerebellum, 2011, 10, 667-682.	2.5	26
170	Performance in eyeblink conditioning is age and sex dependent. PLoS ONE, 2017, 12, e0177849.	2.5	26
171	Clinical, electrophysiological, and cutaneous innervation changes in patients with bortezomib-induced peripheral neuropathy reveal insight into mechanisms of neuropathic pain. Molecular Pain, 2018, 14, 174480691879704.	2.1	26
172	Differential Coding Strategies in Glutamatergic and GABAergic Neurons in the Medial Cerebellar Nucleus. Journal of Neuroscience, 2020, 40, 159-170.	3.6	26
173	How the COVID-19 pandemic highlights the necessity of animal research. Current Biology, 2020, 30, R1014-R1018.	3.9	26
174	Questioning the Cerebellar Doctrine. Progress in Brain Research, 2014, 210, 59-77.	1.4	25
175	In Vivo Differences in Inputs and Spiking Between Neurons in Lobules VI/VII of Neocerebellum and Lobule X of Archaeocerebellum. Cerebellum, 2015, 14, 506-515.	2.5	25
176	Music Affects Rodents: A Systematic Review of Experimental Research. Frontiers in Behavioral Neuroscience, 2018, 12, 301.	2.0	25
177	Quasiperiodic rhythms of the inferior olive. PLoS Computational Biology, 2019, 15, e1006475.	3.2	25
178	Generation of an Atxn2-CAG100 knock-in mouse reveals N-acetylaspartate production deficit due to early Nat8l dysregulation. Neurobiology of Disease, 2019, 132, 104559.	4.4	24
179	Ozzy, a Jag1 vestibular mouse mutant, displays characteristics of Alagille syndrome. Neurobiology of Disease, 2006, 24, 28-40.	4.4	23
180	Synchronicity and Rhythmicity of Purkinje Cell Firing during Generalized Spike-and-Wave Discharges in a Natural Mouse Model of Absence Epilepsy. Frontiers in Cellular Neuroscience, 2017, 11, 346.	3.7	23

#	Article	IF	Citations
181	Size Does Not Always Matter: Ts65Dn Down Syndrome Mice Show Cerebellum-Dependent Motor Learning Deficits that Cannot Be Rescued by Postnatal SAG Treatment. Journal of Neuroscience, 2013, 33, 15408-15413.	3.6	22
182	Cerebellar function and ischemic brain lesions in migraine patients from the general population. Cephalalgia, 2017, 37, 177-190.	3.9	22
183	Modulation of 7ÂT fMRI Signal in the Cerebellar Cortex and Nuclei During Acquisition, Extinction, and Reacquisition of Conditioned Eyeblink Responses. Human Brain Mapping, 2017, 38, 3957-3974.	3.6	22
184	Variability and directionality of inferior olive neuron dendrites revealed by detailed 3D characterization of an extensive morphological library. Brain Structure and Function, 2019, 224, 1677-1695.	2.3	22
185	OptiFlex: Multi-Frame Animal Pose Estimation Combining Deep Learning With Optical Flow. Frontiers in Cellular Neuroscience, 2021, 15, 621252.	3.7	22
186	Anatomical investigation of potential contacts between climbing fibers and cerebellar Golgi cells in the mouse. Frontiers in Neural Circuits, 2013, 7, 59.	2.8	21
187	A FN-MdV pathway and its role in cerebellar multimodular control of sensorimotor behavior. Nature Communications, 2020, 11 , 6050.	12.8	21
188	Modeled changes of cerebellar activity in mutant mice are predictive of their learning impairments. Scientific Reports, 2016, 6, 36131.	3.3	20
189	Input and output organization of the mesodiencephalic junction for cerebroâ€eerebellar communication. Journal of Neuroscience Research, 2022, 100, 620-637.	2.9	20
190	Presynaptic plasticity at cerebellar parallel fiber terminals. Functional Neurology, 2010, 25, 141-51.	1.3	20
191	Glutamate-induced elevations in intracellular chloride concentration in hippocampal cell cultures derived from EYFP-expressing mice. European Journal of Neuroscience, 2004, 19, 2915-2922.	2.6	19
192	Voltage-Gated Sodium Channels in Cerebellar Purkinje Cells of Mormyrid Fish. Journal of Neurophysiology, 2006, 96, 378-390.	1.8	19
193	Viral Factors Important for Efficient Replication of Influenza A Viruses in Cells of the Central Nervous System. Journal of Virology, 2019, 93, .	3.4	19
194	Single-pulse stimulation of cerebellar nuclei stops epileptic thalamic activity. Brain Stimulation, 2021, 14, 861-872.	1.6	19
195	Modulation of Electrotonic Coupling in the Inferior Olive by Inhibitory and Excitatory Inputs: Integration in the Glomerulus. Neuron, 2014, 81, 1215-1217.	8.1	18
196	Modulation of Murine Olivary Connexin 36 Gap Junctions by PKA and CaMKII. Frontiers in Cellular Neuroscience, 2017, 11, 397.	3.7	18
197	SLC26A11 (KBAT) in Purkinje Cells Is Critical for Inhibitory Transmission and Contributes to Locomotor Coordination. ENeuro, 2016, 3, ENEURO.0028-16.2016.	1.9	18
198	Inferior olivary-induced expression of Fos-like immunoreactivity in the cerebellar nuclei of wild-type and Lurcher mice. European Journal of Neuroscience, 1999, 11, 3809-3822.	2.6	17

#	Article	IF	CITATIONS
199	AMPAR Auxiliary Protein SHISA6 Facilitates Purkinje Cell Synaptic Excitability and Procedural Memory Formation. Cell Reports, 2020, 31, 107515.	6.4	17
200	NMDARs in granule cells contribute to parallel fiber–Purkinje cell synaptic plasticity and motor learning. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	7.1	17
201	Purkinje cells translate subjective salience into readiness to act and choice performance. Cell Reports, 2021, 37, 110116.	6.4	17
202	Light microscopic and ultrastructural investigation of the dopaminergic innervation of the ventrolateral outgrowth of the rat inferior olive. Brain Research, 1998, 802, 267-273.	2.2	16
203	Acidosis, cognitive dysfunction and motor impairments in patients with kidney disease. Nephrology Dialysis Transplantation, 2021, 37, ii4-ii12.	0.7	16
204	Impaired Spatio-Temporal Predictive Motor Timing Associated with Spinocerebellar Ataxia Type 6. PLoS ONE, 2016, 11, e0162042.	2.5	16
205	Climbing fiber synaptic plasticity and modifications in Purkinje cell excitability. Progress in Brain Research, 2005, 148, 81-94.	1.4	15
206	An expandable embryonic stem cell-derived Purkinje neuron progenitor population that exhibits in vivo maturation in the adult mouse cerebellum. Scientific Reports, 2017, 7, 8863.	3.3	15
207	Inactive Atm abrogates DSB repair in mouse cerebellum more than does Atm loss, without causing a neurological phenotype. DNA Repair, 2018, 72, 10-17.	2.8	15
208	Electron microscopy of in vivo recorded and intracellularly injected inferior olivary neurons and their GABAergic innervation in the cat. Microscopy Research and Technique, 1993, 24, 85-102.	2.2	14
209	Comparing Two Diagnostic Laboratory Tests for Williams Syndrome: Fluorescent In Situ Hybridization versus Multiplex Ligation-Dependent Probe Amplification. Genetic Testing and Molecular Biomarkers, 2007, 11, 321-327.	1.7	14
210	Cerebellar transcranial direct current stimulation interacts with BDNF Val66Met in motor learning. Brain Stimulation, 2018, 11, 759-771.	1.6	14
211	Impact of NMDA Receptor Overexpression on Cerebellar Purkinje Cell Activity and Motor Learning. ENeuro, 2018, 5, ENEURO.0270-17.2018.	1.9	14
212	The basal interstitial nucleus (BIN) of the cerebellum provides diffuse ascending inhibitory input to the floccular granule cell layer. Journal of Comparative Neurology, 2018, 526, 2231-2256.	1.6	14
213	Ultrastructural study of the GABAergic and cerebellar input to the nucleus reticularis tegmenti pontis. Brain Research, 1997, 766, 289-296.	2.2	13
214	Diversity and Complexity of Roles of Granule Cells in the Cerebellar Cortex. Editorial. Cerebellum, 2012, 11, 1-4.	2.5	13
215	Impact of aging on long-term ocular reflex adaptation. Neurobiology of Aging, 2013, 34, 2784-2792.	3.1	13
216	Distinct roles of \hat{l}_{\pm} - and \hat{l}^2 CaMKII in controlling long-term potentiation of GABAA-receptor mediated transmission in murine Purkinje cells. Frontiers in Cellular Neuroscience, 2014, 8, 16.	3.7	13

#	Article	IF	CITATIONS
217	Forward Signaling by Unipolar Brush Cells in the Mouse Cerebellum. Cerebellum, 2015, 14, 528-533.	2.5	13
218	Vestibular Dysfunction in the Epistatic circler Mouse Is Caused by Phenotypic Interaction of One Recessive Gene and Three Modifier Genes. Genome Research, 2002, 12, 613-617.	5.5	12
219	Autofluorescent Flavoprotein Imaging of Spinal Nociceptive Activity. Journal of Neuroscience, 2010, 30, 4081-4087.	3.6	12
220	Enhanced AMPA receptor function promotes cerebellar long-term depression rather than potentiation. Learning and Memory, 2014, 21, 662-667.	1.3	12
221	The reduction of intraepidermal P2X ₃ nerve fiber density correlates with behavioral hyperalgesia in a rat model of nerve injuryâ€induced pain. Journal of Comparative Neurology, 2017, 525, 3757-3768.	1.6	11
222	Region-specific Foxp2 deletions in cortex, striatum or cerebellum cannot explain vocalization deficits observed in spontaneous global knockouts. Scientific Reports, 2020, 10, 21631.	3.3	11
223	Activity of Cerebellar Nuclei Neurons Correlates with Zebrinll Identity of Their Purkinje Cell Afferents. Cells, 2021, 10, 2686.	4.1	11
224	Early Trajectory Prediction in Elite Athletes. Cerebellum, 2018, 17, 766-776.	2.5	10
225	Cerebellar Learning Properties Are Modulated by the CRF Receptor. Journal of Neuroscience, 2018, 38, 6751-6765.	3.6	10
226	Sleep deprivation directly following eyeblink-conditioning impairs memory consolidation. Neurobiology of Learning and Memory, 2020, 170, 107165.	1.9	10
227	Temporal dynamics of the cerebelloâ€cortical convergence in ventroâ€lateral motor thalamus. Journal of Physiology, 2021, 599, 2055-2073.	2.9	10
228	Regionâ€specific preservation of Purkinje cell morphology and motor behavior in the ATXN1[82Q] mouse model of spinocerebellar ataxia 1. Brain Pathology, 2021, 31, e12946.	4.1	10
229	Origin of Vestibular Dysfunction in Usher Syndrome Type 1B. Neurobiology of Disease, 2001, 8, 69-77.	4.4	9
230	Inferior Olive: All Ins and Outs., 2013, , 1013-1058.		9
231	Whole brain 7Tâ€fMRI during pelvic floor muscle contraction in male subjects. Neurourology and Urodynamics, 2020, 39, 382-392.	1.5	9
232	The Cerebellar Nuclei Take Center Stage. Cerebellum, 2011, 10, 633-636.	2.5	8
233	Caffeine has no effect on eyeblink conditioning in mice. Behavioural Brain Research, 2018, 337, 252-255.	2.2	8
234	The Dorsal Root Ganglion as a Novel Neuromodulatory Target to Evoke Strong and Reproducible Motor Responses in Chronic Motor Complete Spinal Cord Injury: A Case Series of Five Patients. Neuromodulation, 2021, 24, 779-793.	0.8	8

#	Article	IF	CITATIONS
235	WhiskEras: A New Algorithm for Accurate Whisker Tracking. Frontiers in Cellular Neuroscience, 2020, 14, 588445.	3.7	8
236	Controlling absence seizures from the cerebellar nuclei via activation of the Gq signaling pathway. Cellular and Molecular Life Sciences, 2022, 79, 197.	5.4	8
237	Performance analysis of accelerated biophysically-meaningful neuron simulations. , 2016, , .		7
238	Translation information processing is regulated by protein kinase C-dependent mechanism in Purkinje cells in murine posterior vermis. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 17348-17358.	7.1	7
239	Bilateral L2 dorsal root ganglion-stimulation suppresses lower limb spasticity following chronic motor complete Spinal Cord Injury: A case report. Brain Stimulation, 2020, 13, 637-639.	1.6	7
240	Pain-related changes in cutaneous innervation of patients suffering from bortezomib-induced, diabetic or chronic idiopathic axonal polyneuropathy. Brain Research, 2020, 1730, 146621.	2.2	7
241	Spinal Autofluorescent Flavoprotein Imaging in a Rat Model of Nerve Injury-Induced Pain and the Effect of Spinal Cord Stimulation. PLoS ONE, 2014, 9, e109029.	2.5	7
242	Perceptual learning, motor learning, and automaticity. Trends in Cognitive Sciences, 2010, 14, 1.	7.8	6
243	Motor Systems: Reaching Out and Grasping the Molecular Tools. Current Biology, 2014, 24, R269-R271.	3.9	6
244	Optimal mapping of inferior olive neuron simulations on the Single-Chip Cloud Computer. , 2014, , .		6
245	Optimizing Extended Hodgkin-Huxley Neuron Model Simulations for a Xeon/Xeon Phi Node. IEEE Transactions on Parallel and Distributed Systems, 2017, 28, 2581-2594.	5.6	6
246	Intrinsic excitement in cerebellar nuclei neurons during learning. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, 9824-9826.	7.1	6
247	Securing Implantable Medical Devices Using Ultrasound Waves. IEEE Access, 2021, 9, 80170-80182.	4.2	6
248	Response to "Fallacies of Mice Experiments― Neuroinformatics, 2019, 17, 475-478.	2.8	5
249	Genetic risk for Alzheimer disease in children: Evidence from earlyâ€life IQ and brain whiteâ€matter microstructure. Genes, Brain and Behavior, 2020, 19, e12656.	2.2	5
250	Pavlovian eyeblink conditioning is severely impaired in tottering mice. Journal of Neurophysiology, 2021, 125, 398-407.	1.8	5
251	Anomalous diffusion imposed by dendritic spines (Commentary on Santamaria et al.). European Journal of Neuroscience, 2011, 34, 559-560.	2.6	4
252	Glissades Are Altered by Lesions to the Oculomotor Vermis but Not by Saccadic Adaptation. Frontiers in Behavioral Neuroscience, 2019, 13, 194.	2.0	4

#	Article	IF	Citations
253	Sleep quality does not mediate the negative effects of chronodisruption on body composition and metabolic syndrome in healthcare workers in Ecuador. Diabetes and Metabolic Syndrome: Clinical Research and Reviews, 2021, 15, 397-402.	3.6	4
254	Unilateral L2-Level DRG-stimulation evokes bilateral CPG-Like motor response in a patient with chronic pain. Brain Stimulation, 2020, 13, 1719-1721.	1.6	3
255	Synthetic Polymers Provide a Robust Substrate for Functional Neuron Culture. Advanced Healthcare Materials, 2020, 9, e1901347.	7.6	3
256	Hereditary Familial Vestibular Degenerative Diseases. Annals of the New York Academy of Sciences, 2001, 942, 493-496.	3.8	2
257	PRRT2-dependent dyskinesia: cerebellar, paroxysmal and persistent. Cell Research, 2018, 28, 3-4.	12.0	2
258	Blood Pressure in Andean Adults Living Permanently at Different Altitudes. High Altitude Medicine and Biology, 2020, 21, 360-369.	0.9	2
259	Protein Phosphatase 2B Dual Function Facilitates Synaptic Integrity and Motor Learning. Journal of Neuroscience, 2021, 41, 5579-5594.	3.6	2
260	Cerebellum: What is in a Name? Historical Origins and First Use of This Anatomical Term. Cerebellum, 2020, 19, 550-561.	2.5	1
261	How to Identify Responders and Nonresponders to Dorsal Root Ganglionâ€Stimulation Aimed at Eliciting Motor Responses in Chronic Spinal Cord Injury: Post Hoc Clinical and Neurophysiological Tests in a Case Series of Five Patients. Neuromodulation, 2021, 24, 719-728.	0.8	1
262	Decoding the infrastructure of the cerebellum. ELife, 2020, 9, .	6.0	1
263	Reply to Piochon et al.: NMDARs in Purkinje cells are not involved in parallel fiber–Purkinje cell synaptic plasticity or motor learning. Proceedings of the National Academy of Sciences of the United States of America, 2022, 119, .	7.1	1
264	Time and tide of cerebellar synchrony. Proceedings of the National Academy of Sciences of the United States of America, 2022, 119, e2204155119.	7.1	1
265	Purkinje Cell Activity in the Medial and Lateral Cerebellum During Suppression of Voluntary Eye Movements in Rhesus Macaques. Frontiers in Cellular Neuroscience, 2022, 16, 863181.	3.7	1
266	Corrigendum to "Cerebellar molecular layer interneurons – computational properties and roles in learning―[Trends in Neurosciences 33(11), 2010, 524–532]. Trends in Neurosciences, 2011, 34, 113.	8.6	0
267	Editorial on the Honorary Cerebellum Issue for the Retirement of Enrico Mugnaini. Cerebellum, 2015, 14, 487-490.	2.5	0
268	Conditional disruption of Foxp2 in the mouse brain. Molecular Psychiatry, 2019, 24, 321-321.	7.9	0
269	ITVT-10. Using functional Ultrasound (fUS) for real-time, depth-resolved functional and vascular delineation of brain tumors with micrometer-millisecond precision. Neuro-Oncology, 2021, 23, vi230-vi230.	1.2	0
270	NIMG-19. USING FUNCTIONAL ULTRASOUND (FUS) TO MAP BRAIN FUNCTIONALITY AND TUMOR VASCULATURE WITH MICROMETER-MILLISECOND PRECISION. Neuro-Oncology, 2020, 22, ii151-ii151.	1.2	0