Alberto Carbonell

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/300686/publications.pdf

Version: 2024-02-01

44 papers 2,572 citations

25 h-index

236925

265206 42 g-index

46 all docs

46 docs citations

46 times ranked

2331 citing authors

#	Article	IF	CITATIONS
1	Fine-Tuning Plant Gene Expression with Synthetic Trans-Acting Small Interfering RNAs. Methods in Molecular Biology, 2022, 2408, 227-242.	0.9	O
2	Systemic silencing of an endogenous plant gene by two classes of mobile <scp>21â€nucleotide</scp> artificial small <scp>RNAs</scp> . Plant Journal, 2022, 110, 1166-1181.	5.7	4
3	In memoriam of Ricardo Flores: The career, achievements, and legacy of an inspirational plant virologist. Virus Research, 2022, 312, 198718.	2.2	2
4	RNAi tools for controlling viroid diseases. Virus Research, 2022, 313, 198729.	2.2	7
5	Artificial Small RNAs for Functional Genomics in Plants. Concepts and Strategies in Plant Sciences, 2021, , 1-29.	0.5	1
6	Intact RNA structurome reveals mRNA structure-mediated regulation of miRNA cleavage inÂvivo. Nucleic Acids Research, 2020, 48, 8767-8781.	14.5	33
7	Artificial Small RNA-Based Silencing Tools for Antiviral Resistance in Plants. Plants, 2020, 9, 669.	3.5	23
8	Fine-tune control of targeted RNAi efficacy by plant artificial small RNAs. Nucleic Acids Research, 2020, 48, 6234-6250.	14.5	16
9	Symptomatic plant viroid infections in phytopathogenic fungi: A request for a critical reassessment. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 10126-10128.	7.1	14
10	Fast-Forward Identification of Highly Effective Artificial Small RNAs Against Different Tomato spotted wilt virus Isolates. Molecular Plant-Microbe Interactions, 2019, 32, 142-156.	2.6	29
11	Identification and Characterization of Stress-Responsive TAS3-Derived TasiRNAs in Melon. Plant and Cell Physiology, 2019, 60, 2382-2393.	3.1	8
12	Multiâ€ŧargeting of viral RNAs with synthetic <i>trans</i> â€acting small interfering RNAs enhances plant antiviral resistance. Plant Journal, 2019, 100, 720-737.	5.7	35
13	Design and High-Throughput Generation of Artificial Small RNA Constructs for Plants. Methods in Molecular Biology, 2019, 1932, 247-260.	0.9	15
14	Design, Synthesis, and Functional Analysis of Highly Specific Artificial Small RNAs with Antiviral Activity in Plants. Methods in Molecular Biology, 2019, 2028, 231-246.	0.9	14
15	Secondary Small Interfering RNA-Based Silencing Tools in Plants: An Update. Frontiers in Plant Science, 2019, 10, 687.	3.6	24
16	A viral suppressor of RNA silencing inhibits ARGONAUTE 1 function by precluding target RNA binding to pre-assembled RISC. Nucleic Acids Research, 2017, 45, 7736-7750.	14.5	31
17	Plant ARGONAUTEs: Features, Functions, and Unknowns. Methods in Molecular Biology, 2017, 1640, 1-21.	0.9	39
18	Immunoprecipitation and High-Throughput Sequencing of ARGONAUTE-Bound Target RNAs from Plants. Methods in Molecular Biology, 2017, 1640, 93-112.	0.9	6

#	Article	IF	CITATIONS
19	Artificial microRNAs and synthetic <i>trans</i> ecting small interfering RNAs interfere with viroid infection. Molecular Plant Pathology, 2017, 18, 746-753.	4.2	49
20	Dicer-Like 4 Is Involved in Restricting the Systemic Movement of <i>Zucchini yellow mosaic virus</i> in <i>Nicotiana benthamiana</i> Molecular Plant-Microbe Interactions, 2017, 30, 63-71.	2.6	19
21	P-SAMS: a web site for plant artificial microRNA and synthetic <i>trans</i> -acting small interfering RNA design. Bioinformatics, 2016, 32, 157-158.	4.1	67
22	Fast-forward generation of effective artificial small RNAs for enhanced antiviral defense in plants. RNA & Disease (Houston, Tex), 2016, 3, .	1.0	8
23	Molecular Ecology: Trading defence for vigour. Nature Plants, 2015, 1, 15174.	9.3	1
24	The Potyviridae P1a leader protease contributes to host range specificity. Virology, 2015, 476, 264-270.	2.4	20
25	Viroids, the simplest RNA replicons: How they manipulate their hosts for being propagated and how their hosts react for containing the infection. Virus Research, 2015, 209, 136-145.	2.2	96
26	Antiviral roles of plant ARGONAUTES. Current Opinion in Plant Biology, 2015, 27, 111-117.	7.1	270
27	Roles and Programming of Arabidopsis ARGONAUTE Proteins during Turnip Mosaic Virus Infection. PLoS Pathogens, 2015, 11, e1004755.	4.7	175
28	Highly specific gene silencing in a monocot species by artificial micro <scp>RNA</scp> s derived from chimeric <i>mi<scp>RNA</scp></i> precursors. Plant Journal, 2015, 82, 1061-1075.	5.7	45
29	ARGONAUTE PIWI domain and microRNA duplex structure regulate small RNA sorting in Arabidopsis. Nature Communications, 2014, 5, 5468.	12.8	69
30	New Generation of Artificial MicroRNA and Synthetic Trans-Acting Small Interfering RNA Vectors for Efficient Gene Silencing in Arabidopsis. Plant Physiology, 2014, 165, 15-29.	4.8	119
31	Specific Argonautes Selectively Bind Small RNAs Derived from Potato Spindle Tuber Viroid and Attenuate Viroid Accumulation <i>In Vivo</i> . Journal of Virology, 2014, 88, 11933-11945.	3.4	97
32	Preparation of Multiplexed Small RNA Libraries from Plants. Bio-protocol, 2014, 4, .	0.4	7
33	Diverse Amino Acid Changes at Specific Positions in the N-Terminal Region of the Coat Protein Allow <i>Plum pox virus</i> to Adapt to New Hosts. Molecular Plant-Microbe Interactions, 2013, 26, 1211-1224.	2.6	64
34	Functional Analysis of Three <i>Arabidopsis</i> ARGONAUTES Using Slicer-Defective Mutants Â. Plant Cell, 2012, 24, 3613-3629.	6.6	249
35	The <i>Cucumber vein yellowing virus</i> Silencing Suppressor P1b Can Functionally Replace HCPro in <i>Plum pox virus</i> Infection in a Host-Specific Manner. Molecular Plant-Microbe Interactions, 2012, 25, 151-164.	2.6	30
36	Hammerhead Ribozymes Against Virus and Viroid RNAs., 2012,, 411-427.		3

#	Article	IF	CITATIONS
37	Heterologous RNA-silencing suppressors from both plant- and animal-infecting viruses support plum pox virus infection. Journal of General Virology, 2012, 93, 1601-1611.	2.9	32
38	Virus variants with differences in the P1 protein coexist in a <i>Plum pox virus</i> population and display particular hostâ€dependent pathogenicity features. Molecular Plant Pathology, 2012, 13, 877-886.	4.2	65
39	Trans -cleaving hammerhead ribozymes with tertiary stabilizing motifs: in vitro and in vivo activity against a structured viroid RNA. Nucleic Acids Research, 2011, 39, 2432-2444.	14.5	31
40	Unique functionality of 22-nt miRNAs in triggering RDR6-dependent siRNA biogenesis from target transcripts in Arabidopsis. Nature Structural and Molecular Biology, 2010, 17, 997-1003.	8.2	448
41	Viroid Replication: Rolling-Circles, Enzymes and Ribozymes. Viruses, 2009, 1, 317-334.	3.3	77
42	Double-stranded RNA interferes in a sequence-specific manner with the infection of representative members of the two viroid families. Virology, 2008, 371, 44-53.	2.4	106
43	Effects of the trinucleotide preceding the self-cleavage site on eggplant latent viroid hammerheads: differences in co- and post-transcriptional self-cleavage may explain the lack of trinucleotide AUC in most natural hammerheads. Nucleic Acids Research, 2006, 34, 5613-5622.	14.5	32
44	Viroids: the minimal non-coding RNAs with autonomous replication. FEBS Letters, 2004, 567, 42-48.	2.8	88