Sinead Weldon

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/300685/publications.pdf

Version: 2024-02-01

53 1,999 2
papers citations h-in

236925 243625 243625 44 h-index g-index

53 53 docs citations

53 times ranked 3048 citing authors

#	Article	IF	CITATIONS
1	Cathepsin S Contributes to Lung Inflammation in Acute Respiratory Distress Syndrome. American Journal of Respiratory and Critical Care Medicine, 2022, 205, 769-782.	5.6	9
2	Deciphering Respiratory-Virus-Associated Interferon Signaling in COPD Airway Epithelium. Medicina (Lithuania), 2022, 58, 121.	2.0	6
3	Altered Differentiation and Inflammation Profiles Contribute to Enhanced Innate Responses in Severe COPD Epithelium to Rhinovirus Infection. Frontiers in Medicine, 2022, 9, 741989.	2.6	3
4	The Effect of CFTR Modulators on Airway Infection in Cystic Fibrosis. International Journal of Molecular Sciences, 2022, 23, 3513.	4.1	23
5	Therapeutic Inhibition of Cathepsin S Reduces Inflammation and Mucus Plugging in Adult βENaC-Tg Mice. Mediators of Inflammation, 2021, 2021, 1-10.	3.0	3
6	Proteases, Mucus, and Mucosal Immunity in Chronic Lung Disease. International Journal of Molecular Sciences, 2021, 22, 5018.	4.1	15
7	The Impact of Lung Proteases on Snake-Derived Antimicrobial Peptides. Biomolecules, 2021, 11, 1106.	4.0	5
8	Targeting Proteases in Cystic Fibrosis Lung Disease. Paradigms, Progress, and Potential. American Journal of Respiratory and Critical Care Medicine, 2020, 201, 141-147.	5.6	43
9	Lack of IL-1 Receptor Signaling Reduces Spontaneous Airway Eosinophilia in Juvenile Mice with Muco-Obstructive Lung Disease. American Journal of Respiratory Cell and Molecular Biology, 2020, 62, 300-309.	2.9	7
10	Fasciola hepatica-Derived Molecules as Regulators of the Host Immune Response. Frontiers in Immunology, 2020, 11, 2182.	4.8	42
11	The Impact of Aging in Acute Respiratory Distress Syndrome: A Clinical and Mechanistic Overview. Frontiers in Medicine, 2020, 7, 589553.	2.6	16
12	Airway Inflammation and Host Responses in the Era of CFTR Modulators. International Journal of Molecular Sciences, 2020, 21, 6379.	4.1	36
13	Cathepsin S: investigating an old player in lung disease pathogenesis, comorbidities, and potential therapeutics. Respiratory Research, 2020, 21, 111.	3.6	47
14	Mechanisms of Virus-Induced Airway Immunity Dysfunction in the Pathogenesis of COPD Disease, Progression, and Exacerbation. Frontiers in Immunology, 2020, 11, 1205.	4.8	33
15	Schistosoma mansoni immunomodulatory molecule Sm16/SPO-1/SmSLP is a member of the trematode-specific helminth defence molecules (HDMs). PLoS Neglected Tropical Diseases, 2020, 14, e0008470.	3.0	8
16	At the forefront of cystic fibrosis Basic Science research: 16th ECFS Basic Science Conference. Journal of Cystic Fibrosis, 2020, 19, 169-170.	0.7	1
17	Targeting of cathepsin S reduces cystic fibrosis-like lung disease. European Respiratory Journal, 2019, 53, 1801523.	6.7	31
18	Sea snake cathelicidin (Hc-cath) exerts a protective effect in mouse models of lung inflammation and infection. Scientific Reports, 2019, 9, 6071.	3.3	13

#	Article	IF	Citations
19	Preclinical Evaluation of Dose-Volume Effects and Lung Toxicity Occurring In and Out-of-Field. International Journal of Radiation Oncology Biology Physics, 2019, 103, 1231-1240.	0.8	17
20	Protein Phosphatase 2A Reduces Cigarette Smoke–induced Cathepsin S and Loss of Lung Function. American Journal of Respiratory and Critical Care Medicine, 2019, 200, 51-62.	5.6	39
21	Cystic fibrosis epithelial cells are primed for apoptosis as a result of increased Fas (CD95). Journal of Cystic Fibrosis, 2018, 17, 616-623.	0.7	8
22	The parasitic 68-mer peptide FhHDM-1 inhibits mixed granulocytic inflammation and airway hyperreactivity in experimental asthma. Journal of Allergy and Clinical Immunology, 2018, 141, 2316-2319.	2.9	9
23	Inflammation and host-pathogen interaction: Cause and consequence in cystic fibrosis lung disease. Journal of Cystic Fibrosis, 2018, 17, S40-S45.	0.7	9
24	Proteases and Their Inhibitors in Chronic Obstructive Pulmonary Disease. Journal of Clinical Medicine, 2018, 7, 244.	2.4	37
25	The role of whey acidic protein four-disulfide-core proteins in respiratory health and disease. Biological Chemistry, 2017, 398, 425-440.	2.5	16
26	Characterisation of eppin function: expression and activity in the lung. European Respiratory Journal, 2017, 50, 1601937.	6.7	5
27	Inhibition of ataxia telangiectasia related-3 (ATR) improves therapeutic index in preclinical models of non-small cell lung cancer (NSCLC) radiotherapy. Radiotherapy and Oncology, 2017, 124, 475-481.	0.6	30
28	Activity of innate antimicrobial peptides and ivacaftor against clinical cystic fibrosis respiratory pathogens. International Journal of Antimicrobial Agents, 2017, 50, 427-435.	2.5	43
29	A secretory leukocyte protease inhibitor variant with improved activity against lung infection. Mucosal Immunology, 2016, 9, 669-676.	6.0	27
30	The Role of Serine Proteases and Antiproteases in the Cystic Fibrosis Lung. Mediators of Inflammation, 2015, 2015, 1-10.	3.0	87
31	The Ability of Secretory Leukocyte Protease Inhibitor to Inhibit Apoptosis in Monocytes Is Independent of Its Antiprotease Activity. Journal of Immunology Research, 2015, 2015, 1-6.	2.2	14
32	A Functional Variant of Elafin With Improved Anti-inflammatory Activity for Pulmonary Inflammation. Molecular Therapy, 2015, 23, 24-31.	8.2	20
33	A role for whey acidic protein four-disulfide-core 12 (WFDC12) in the regulation of the inflammatory response in the lung. Thorax, 2015, 70, 426-432.	5.6	15
34	Type-I interferons induce lung protease responses following respiratory syncytial virus infection via RIG-I-like receptors. Mucosal Immunology, 2015, 8, 161-175.	6.0	31
35	miR-31 Dysregulation in Cystic Fibrosis Airways Contributes to Increased Pulmonary Cathepsin S Production. American Journal of Respiratory and Critical Care Medicine, 2014, 190, 165-174.	5.6	71
36	Respiratory Syncytial Virus Infections Enhance Cigarette Smoke Induced COPD in Mice. PLoS ONE, 2014, 9, e90567.	2.5	52

3

#	Article	IF	Citations
37	Proteolytic cleavage of elafin by 20S proteasome may contribute to inflammation in acute lung injury. Thorax, 2013, 68, 315-321.	5.6	15
38	Glucocorticoid receptor \hat{l}^2 and histone deacetylase 1 and 2 expression in the airways of severe asthma. Thorax, 2012, 67, 392-398.	5.6	60
39	SLPI and elafin: multifunctional antiproteases of the WFDC family. Biochemical Society Transactions, 2011, 39, 1437-1440.	3.4	95
40	Evaluation of the Ability of LL-37 to Neutralise LPS In Vitro and Ex Vivo. PLoS ONE, 2011, 6, e26525.	2.5	88
41	Antiproteases as Therapeutics to Target Inflammation in Cystic Fibrosis. Open Respiratory Medicine Journal, 2010, 4, 20-31.	0.4	13
42	Functional study of elafin cleaved by Pseudomonas aeruginosa metalloproteinases. Biological Chemistry, 2010, 391, 705-16.	2.5	31
43	Impaired Immune Tolerance to <i>Porphyromonas gingivalis</i> Lipopolysaccharide Promotes Neutrophil Migration and Decreased Apoptosis. Infection and Immunity, 2010, 78, 4151-4156.	2.2	42
44	Antiproteases as Therapeutics to Target Inflammation in Cystic Fibrosis~!2009-07-21~!2009-10-30~!2010-03-30~!. Open Respiratory Medicine Journal, 2010, 4, 20-31.	0.4	23
45	Decreased Levels of Secretory Leucoprotease Inhibitor in the <i>Pseudomonas</i> Fibrosis Lung Are Due to Neutrophil Elastase Degradation. Journal of Immunology, 2009, 183, 8148-8156.	0.8	109
46	Elafin, an Elastase-specific Inhibitor, Is Cleaved by Its Cognate Enzyme Neutrophil Elastase in Sputum from Individuals with Cystic Fibrosis. Journal of Biological Chemistry, 2008, 283, 32377-32385.	3.4	75
47	INNATE HOST DEFENSE FUNCTIONS OF SECRETORY LEUCOPROTEASE INHIBITOR. Experimental Lung Research, 2007, 33, 485-491.	1.2	24
48	The role of secretory leucoprotease inhibitor in the resolution of inflammatory responses. Biochemical Society Transactions, 2007, 35, 273-276.	3.4	40
49	Docosahexaenoic acid induces an anti-inflammatory profile in lipopolysaccharide-stimulated human THP-1 macrophages more effectively than eicosapentaenoic acid. Journal of Nutritional Biochemistry, 2007, 18, 250-258.	4.2	261
50	LPS induced tissue factor expression in the THP-1 monocyte cell line is attenuated by conjugated linoleic acid. Thrombosis Research, 2006, 117, 475-480.	1.7	8
51	Secretory leucoprotease inhibitor binds to NF-κB binding sites in monocytes and inhibits p65 binding. Journal of Experimental Medicine, 2005, 202, 1659-1668.	8.5	204
52	Conjugated linoleic acid and atherosclerosis: no effect on molecular markers of cholesterol homeostasis in THP-1 macrophages. Atherosclerosis, 2004, 174, 261-273.	0.8	40
53	The Serpin-tine Search for Factors Associated with COVID-19 Severity in Patients with COPD. American Journal of Respiratory and Critical Care Medicine, 0, , .	5.6	0