
An Goris

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3006429/publications.pdf Version: 2024-02-01

AN CODIS

#	Article	IF	CITATIONS
1	Genome-wide association study of 14,000 cases of seven common diseases and 3,000 shared controls. Nature, 2007, 447, 661-678.	27.8	8,895
2	Genetic risk and a primary role for cell-mediated immune mechanisms in multiple sclerosis. Nature, 2011, 476, 214-219.	27.8	2,400
3	Association scan of 14,500 nonsynonymous SNPs in four diseases identifies autoimmunity variants. Nature Genetics, 2007, 39, 1329-1337.	21.4	1,298
4	Analysis of immune-related loci identifies 48 new susceptibility variants for multiple sclerosis. Nature Genetics, 2013, 45, 1353-1360.	21.4	1,213
5	The distinct cognitive syndromes of Parkinson's disease: 5 year follow-up of the CamPaIGN cohort. Brain, 2009, 132, 2958-2969.	7.6	842
6	Multiple sclerosis genomic map implicates peripheral immune cells and microglia in susceptibility. Science, 2019, 365, .	12.6	710
7	Interleukin 7 receptor α chain (IL7R) shows allelic and functional association with multiple sclerosis. Nature Genetics, 2007, 39, 1083-1091.	21.4	578
8	Genome-wide association analyses identify new risk variants and the genetic architecture of amyotrophic lateral sclerosis. Nature Genetics, 2016, 48, 1043-1048.	21.4	494
9	Class II HLA interactions modulate genetic risk for multiple sclerosis. Nature Genetics, 2015, 47, 1107-1113.	21.4	312
10	EPHA4 is a disease modifier of amyotrophic lateral sclerosis in animal models and in humans. Nature Medicine, 2012, 18, 1418-1422.	30.7	269
11	The cellular composition of the human immune system is shaped by age and cohabitation. Nature Immunology, 2016, 17, 461-468.	14.5	258
12	Tau and αâ€synuclein in susceptibility to, and dementia in, Parkinson's disease. Annals of Neurology, 2007, 62, 145-153.	5.3	256
13	Familial autoinflammation with neutrophilic dermatosis reveals a regulatory mechanism of pyrin activation. Science Translational Medicine, 2016, 8, 332ra45.	12.4	241
14	Loci associated with ischaemic stroke and its subtypes (SiGN): a genome-wide association study. Lancet Neurology, The, 2016, 15, 174-184.	10.2	217
15	The role of the <i>CD58</i> locus in multiple sclerosis. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, 5264-5269.	7.1	185
16	Network-Based Multiple Sclerosis Pathway Analysis with GWAS Data from 15,000 Cases and 30,000 Controls. American Journal of Human Genetics, 2013, 92, 854-865.	6.2	164
17	A second major histocompatibility complex susceptibility locus for multiple sclerosis. Annals of Neurology, 2007, 61, 228-236.	5.3	156
18	The expanding genetic overlap between multiple sclerosis and type I diabetes. Genes and Immunity, 2009, 10, 11-14.	4.1	153

#	Article	IF	CITATIONS
19	Apolipoprotein E genotype as a risk factor for susceptibility to and dementia in Parkinson's Disease. Journal of Neurology, 2009, 256, 493-498.	3.6	141
20	The role of the Toll receptor pathway in susceptibility to inflammatory bowel diseases. Genes and Immunity, 2007, 8, 387-397.	4.1	129
21	Replication analysis identifies TYK2 as a multiple sclerosis susceptibility factor. European Journal of Human Genetics, 2009, 17, 1309-1313.	2.8	115
22	Low-Frequency and Rare-Coding Variation Contributes to Multiple Sclerosis Risk. Cell, 2018, 175, 1679-1687.e7.	28.9	115
23	Genetic correlation between amyotrophic lateral sclerosis and schizophrenia. Nature Communications, 2017, 8, 14774.	12.8	114
24	Meta-analysis in more than 17,900 cases of ischemic stroke reveals a novel association at 12q24.12. Neurology, 2014, 83, 678-685.	1.1	89
25	Serum neurofilament light chain levels as a marker of upper motor neuron degeneration in patients with Amyotrophic Lateral Sclerosis. Neuropathology and Applied Neurobiology, 2019, 45, 291-304.	3.2	82
26	The Immunogenetic Architecture of Autoimmune Disease. Cold Spring Harbor Perspectives in Biology, 2012, 4, a007260-a007260.	5.5	71
27	IL12A, MPHOSPH9/CDK2AP1 and RGS1 are novel multiple sclerosis susceptibility loci. Genes and Immunity, 2010, 11, 397-405.	4.1	70
28	Inflammatory Gene Expression Profile and Defective Interferonâ€i³ and Granzyme K in Natural Killer Cells From Systemic Juvenile Idiopathic Arthritis Patients. Arthritis and Rheumatology, 2017, 69, 213-224.	5.6	67
29	Cytokine gene polymorphisms in multifactorial diseases: gateways to novel targets for immunotherapy?. Trends in Pharmacological Sciences, 2003, 24, 284-289.	8.7	65
30	A systems biology approach uncovers cell-specific gene regulatory effects of genetic associations in multiple sclerosis. Nature Communications, 2019, 10, 2236.	12.8	65
31	Human immune diversity: from evolution to modernity. Nature Immunology, 2021, 22, 1479-1489.	14.5	64
32	The Genetic Association of Variants in CD6, TNFRSF1A and IRF8 to Multiple Sclerosis: A Multicenter Case-Control Study. PLoS ONE, 2011, 6, e18813.	2.5	63
33	Association of the human leucocyte antigen region with susceptibility to Parkinson's disease. Journal of Neurology, Neurosurgery and Psychiatry, 2010, 81, 890-891.	1.9	60
34	IFNG polymorphisms are associated with gender differences in susceptibility to multiple sclerosis. Genes and Immunity, 2005, 6, 153-161.	4.1	57
35	Genetic variants are major determinants of CSF antibody levels in multiple sclerosis. Brain, 2015, 138, 632-643.	7.6	54
36	Novel COL4A1 mutations cause cerebral small vessel disease by haploinsufficiency. Human Molecular Genetics, 2013, 22, 391-397.	2.9	51

#	Article	IF	CITATIONS
37	TDP-43 M311V mutation in familial amyotrophic lateral sclerosis. Journal of Neurology, Neurosurgery and Psychiatry, 2009, 80, 354-355.	1.9	49
38	Polymorphisms in the interferonâ€Ĵ³/interleukinâ€26 gene region contribute to sex bias in susceptibility to rheumatoid arthritis. Arthritis and Rheumatism, 2003, 48, 2773-2778.	6.7	43
39	The CTLA4 +49 A/G*G–CT60*G haplotype is associated with susceptibility to multiple sclerosis in Flanders. Journal of Neuroimmunology, 2005, 164, 148-153.	2.3	42
40	Variant on 9p21 strongly associates with coronary heart disease, but lacks association with common stroke. European Journal of Human Genetics, 2009, 17, 1287-1293.	2.8	42
41	Analysis of an IFN- gamma gene (IFNG) Polymorphism in Multiple Sclerosis in Europe: Effect of Population Structure on Association with Disease. Journal of Interferon and Cytokine Research, 1999, 19, 1037-1046.	1.2	41
42	The occurrence of mutations in <i>FUS</i> in a Belgian cohort of patients with familial ALS. European Journal of Neurology, 2010, 17, 754-756.	3.3	41
43	Linkage disequilibrium analysis of chromosome 12q14–15 in multiple sclerosis: delineation of a 118-kb interval around interferon-γ (IFNG) that is involved in male versus female differential susceptibility. Genes and Immunity, 2002, 3, 470-476.	4.1	40
44	Multiple sclerosis risk variants alter expression of co-stimulatory genes in B cells. Brain, 2018, 141, 786-796.	7.6	39
45	Replication of KIF21B as a susceptibility locus for multiple sclerosis. Journal of Medical Genetics, 2010, 47, 775-776.	3.2	38
46	Frequency of C9orf72 repeat expansions in amyotrophic lateral sclerosis: a Belgian cohort study. Neurobiology of Aging, 2013, 34, 2890.e7-2890.e12.	3.1	38
47	Genetic variants in the immunoglobulin heavy chain locus are associated with the IgG index in multiple sclerosis. Annals of Neurology, 2013, 73, 86-94.	5.3	38
48	Machine learning identifies an immunological pattern associated with multiple juvenile idiopathic arthritis subtypes. Annals of the Rheumatic Diseases, 2019, 78, 617-628.	0.9	38
49	LncRNAs expression profile in peripheral blood mononuclear cells from multiple sclerosis patients. Journal of Neuroimmunology, 2018, 324, 129-135.	2.3	37
50	New candidate loci for multiple sclerosis susceptibility revealed by a whole genome association screen in a Belgian population. Journal of Neuroimmunology, 2003, 143, 65-69.	2.3	36
51	Power estimation for non-standardized multisite studies. NeuroImage, 2016, 134, 281-294.	4.2	36
52	Genetic Architecture of Adaptive Immune System Identifies Key Immune Regulators. Cell Reports, 2018, 25, 798-810.e6.	6.4	36
53	Immunologic profiles of multiple sclerosis treatments reveal shared early B cell alterations. Neurology: Neuroimmunology and NeuroInflammation, 2016, 3, e240.	6.0	35
54	Interferon-? gene polymorphism-associated risk for multiple sclerosis in sardinia. Annals of Neurology, 1998, 44, 841-842.	5.3	34

#	Article	IF	CITATIONS
55	Whole-genome sequencing reveals a coding non-pathogenic variant tagging a non-coding pathogenic hexanucleotide repeat expansion in C9orf72 as cause of amyotrophic lateral sclerosis. Human Molecular Genetics, 2012, 21, 2412-2419.	2.9	33
56	No evidence for a role of rare <i>CYP27B1</i> functional variations in multiple sclerosis. Annals of Neurology, 2013, 73, 433-437.	5.3	31
57	Polymorphisms in the interleukin-4 and IL-4 receptor genes and multiple sclerosis: a study in Spanish-Basque, Northern Irish and Belgian populations. International Journal of Immunogenetics, 2005, 32, 383-388.	1.8	29
58	Linkage disequilibrium screening for multiple sclerosis implicates JAG1 and POU2AF1 as susceptibility genes in Europeans. Journal of Neuroimmunology, 2006, 179, 108-116.	2.3	29
59	Somatic Variants: New Kids on the Block in Human Immunogenetics. Trends in Genetics, 2019, 35, 935-947.	6.7	29
60	A Trans-Specific Polymorphism in ZC3HAV1 Is Maintained by Long-Standing Balancing Selection and May Confer Susceptibility to Multiple Sclerosis. Molecular Biology and Evolution, 2012, 29, 1599-1613.	8.9	27
61	Burden of risk variants correlates with phenotype of multiple sclerosis. Multiple Sclerosis Journal, 2015, 21, 1670-1680.	3.0	27
62	Neuroinflammation and Its Association with Cognition, Neuronal Markers and Peripheral Inflammation after Chemotherapy for Breast Cancer. Cancers, 2021, 13, 4198.	3.7	27
63	Association of Genetic Markers with CSF Oligoclonal Bands in Multiple Sclerosis Patients. PLoS ONE, 2013, 8, e64408.	2.5	27
64	CD24 Ala/Val polymorphism and multiple sclerosis. Journal of Neuroimmunology, 2006, 175, 200-202.	2.3	25
65	HERV-K113 Is Not Associated with Multiple Sclerosis in a Large Family-Based Study. AIDS Research and Human Retroviruses, 2008, 24, 363-365.	1.1	24
66	NR1H3 p.Arg415Cln Is Not Associated to Multiple Sclerosis Risk. Neuron, 2016, 92, 333-335.	8.1	24
67	Chromosome 7q21–22 and multiple sclerosis: evidence for a genetic susceptibility effect in vicinity to the protachykinin-1 gene. Journal of Neuroimmunology, 2002, 125, 141-148.	2.3	23
68	Investigation of TGFB2 as a candidate gene in multiple sclerosis and Parkinson's disease. Journal of Neurology, 2007, 254, 846-848.	3.6	23
69	A Taqman assay for highâ€ŧhroughput genotyping of the multiple sclerosisâ€associated HLAâ€DRB1*1501 allele. Tissue Antigens, 2008, 72, 401-403.	1.0	23
70	Lack of support for association between the KIF1B rs10492972[C] variant and multiple sclerosis. Nature Genetics, 2010, 42, 469-470.	21.4	23
71	No evidence for shared genetic basis of common variants in multiple sclerosis and amyotrophic lateral sclerosis. Human Molecular Genetics, 2014, 23, 1916-1922.	2.9	23
72	Effects of Vitamin D and Body Mass Index on Disease Risk and Relapse Hazard in Multiple Sclerosis. Neurology: Neuroimmunology and NeuroInflammation, 2022, 9, .	6.0	23

#	Article	IF	CITATIONS
73	CHIT1 at Diagnosis Reflects Longâ€Term Multiple Sclerosis Disease Activity. Annals of Neurology, 2020, 87, 633-645.	5.3	22
74	Progress in Multiple Sclerosis Genetics. Current Genomics, 2012, 13, 646-663.	1.6	20
75	Genetic ablation of IP3receptor 2 increases cytokines and decreases survival ofSOD1G93Amice. Human Molecular Genetics, 2016, 25, 3491-3499.	2.9	19
76	Tau levels do not influence human ALS or motor neuron degeneration in the <i> SOD1 ^{G93A} </i> mouse. Neurology, 2010, 74, 1687-1693.	1.1	18
77	Interleukin-12 p40 polymorphism and susceptibility to multiple sclerosis. Annals of Neurology, 2002, 52, 524-525.	5.3	16
78	TNFRSF1A coding variants in multiple sclerosis. Journal of Neuroimmunology, 2011, 235, 110-112.	2.3	16
79	Analysis of the KIFAP3 gene in amyotrophic lateral sclerosis: a multicenter survival study. Neurobiology of Aging, 2014, 35, 2420.e13-2420.e14.	3.1	16
80	IFNâ€Î³ stimulates CpGâ€induced ILâ€10 production in BÂcells via p38 and JNK signalling pathways. European Journal of Immunology, 2018, 48, 1506-1521.	2.9	16
81	A robust pipeline with high replication rate for detection of somatic variants in the adaptive immune system as a source of common genetic variation in autoimmune disease. Human Molecular Genetics, 2019, 28, 1369-1380.	2.9	16
82	Smoking and multiple sclerosis risk: a Mendelian randomization study. Journal of Neurology, 2020, 267, 3083-3091.	3.6	16
83	HLA-E restricted CD8+ T cell subsets are phenotypically altered in multiple sclerosis patients. Multiple Sclerosis Journal, 2014, 20, 790-801.	3.0	14
84	Environmental risk factors in multiple sclerosis: bridging Mendelian randomization and observational studies. Journal of Neurology, 2022, 269, 4565-4574.	3.6	14
85	SELPLG and SELP single-nucleotide polymorphisms in multiple sclerosis. Neuroscience Letters, 2006, 394, 92-96.	2.1	13
86	Analysis of Plasminogen Genetic Variants in Multiple Sclerosis Patients. G3: Genes, Genomes, Genetics, 2016, 6, 2073-2079.	1.8	13
87	Genetic basis for relapse rate in multiple sclerosis: Association with <i>LRP2</i> genetic variation. Multiple Sclerosis Journal, 2018, 24, 1773-1775.	3.0	13
88	Genetic Variation in <scp><i>WNT9B</i></scp> Increases Relapse Hazard in Multiple Sclerosis. Annals of Neurology, 2021, 89, 884-894.	5.3	12
89	Body Mass Index, Interleukin-6 Signaling and Multiple Sclerosis: A Mendelian Randomization Study. Frontiers in Immunology, 2022, 13, 834644.	4.8	12
90	Myoglobinopathy is an adult-onset autosomal dominant myopathy with characteristic sarcoplasmic inclusions. Nature Communications, 2019, 10, 1396.	12.8	11

#	Article	IF	CITATIONS
91	Polymorphisms in the neuromyelitis optica auto-antigen AQP4 and susceptibility to multiple sclerosis. Journal of Neurology, 2007, 254, 398-399.	3.6	10
92	The origins of diversity in human immunity. Nature Immunology, 2018, 19, 209-210.	14.5	10
93	Natural Killer Cells in Multiple Sclerosis: Entering the Stage. Frontiers in Immunology, 2022, 13, 869447.	4.8	10
94	Interferon gamma gene in rheumatoid arthritis. Lancet, The, 2000, 356, 2191.	13.7	8
95	Polymorphisms in the GluR2 gene are not associated with amyotrophic lateral sclerosis. Neurobiology of Aging, 2012, 33, 418-420.	3.1	8
96	No evidence for association of a European-specific chromosome 17 inversion with multiple sclerosis. European Journal of Human Genetics, 2006, 14, 1064-1064.	2.8	7
97	No evidence for association between an MAOA functional polymorphism and susceptibility to Parkinson's disease. Journal of Neurology, 2009, 256, 132-133.	3.6	7
98	A Dinucleotide Repeat Polymorphism Located in the IFN-α/β Gene Cluster at Chromosome 9p22 Is Not Associated with Multiple Sclerosis in Sardinia. Experimental and Clinical Immunogenetics, 1999, 16, 26-29.	1.2	6
99	No alterations in α-synuclein gene dosage observed in sporadic Parkinson's disease. Movement Disorders, 2006, 21, 731-732.	3.9	6
100	KIR2DL4 (CD158d) polymorphisms and susceptibility to multiple sclerosis. Journal of Neuroimmunology, 2009, 210, 113-115.	2.3	6
101	Rare <i>MEFV</i> variants are not associated with risk to develop multiple sclerosis and severity of disease. Multiple Sclerosis Journal, 2013, 19, 1132-1136.	3.0	6
102	Genetic burden mirrors epidemiology of multiple sclerosis. Multiple Sclerosis Journal, 2015, 21, 1353-1354.	3.0	6
103	Treatment-Induced BAFF Expression and B Cell Biology in Multiple Sclerosis. Frontiers in Immunology, 2021, 12, 676619.	4.8	6
104	Quantitative MRI phenotypes capture biological heterogeneity in multiple sclerosis patients. Scientific Reports, 2021, 11, 1573.	3.3	5
105	Novel Olig 1-coding variants and susceptibility to multiple sclerosis. Journal of Neurology, Neurosurgery and Psychiatry, 2006, 77, 1296-1297.	1.9	4
106	Lack of association between variants in theVKORC1gene and cerebrovascular or coronary heart disease. Journal of Thrombosis and Haemostasis, 2008, 6, 2220-2223.	3.8	3
107	Role of Genetic Factors in Pathophysiology of Multiple Sclerosis. , 2016, , 153-180.		2
108	Leveraging human genetics to inform intervention strategies for multiple sclerosis. Neurology, 2019, 92, 735-736.	1.1	2

#	Article	IF	CITATIONS
109	The IFNG–IL26–IL22 Cytokine Gene Cluster. , 2006, , 157-174.		2
110	Corrigendum to "Linkage disequilibrium screening for multiple sclerosis implicates JAG1 and POU2AF1 as susceptibility genes in Europeans―[J. Neuroimmunol. 179 (2006) 108–116]. Journal of Neuroimmunology, 2007, 189, 175-176.	2.3	1
111	Comment: The HLA region in multiple sclerosis. Neurology, 2012, 79, 544-544.	1.1	1
112	Transcript-specific regulation in T-cells in multiple sclerosis susceptibility. European Journal of Human Genetics, 2020, 28, 849-850.	2.8	1
113	"Omics―and the immunopathogenesis of multiple sclerosis. Neuroscience Letters, 2012, 508, 1-3.	2.1	Ο
114	Reply to Dr Pandey. Annals of Neurology, 2013, 73, 148-149.	5.3	0