
Jianhua Sui

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3004649/publications.pdf Version: 2024-02-01

ΠΑΝΗΠΑ SUI

#	Article	IF	CITATIONS
1	Anatomically distinct fibroblast subsets determine skin autoimmune patterns. Nature, 2022, 601, 118-124.	27.8	83
2	Structural mechanism of protein recognition by the FW domain of autophagy receptor Nbr1. Nature Communications, 2022, 13, .	12.8	4
3	NTCP Deficiency Causes Gallbladder Abnormalities in Mice and Human Beings. Cellular and Molecular Gastroenterology and Hepatology, 2021, 11, 831-839.	4.5	7
4	Rab22a-NeoF1 fusion protein promotes osteosarcoma lung metastasis through its secretion into exosomes. Signal Transduction and Targeted Therapy, 2021, 6, 59.	17.1	45
5	A structure of human Scap bound to Insig-2 suggests how their interaction is regulated by sterols. Science, 2021, 371, .	12.6	44
6	A bispecific antibody targeting GPC3 and CD47 induced enhanced antitumor efficacy against dual antigen-expressing HCC. Molecular Therapy, 2021, 29, 1572-1584.	8.2	47
7	Transcriptionally inactive hepatitis B virus episome DNA preferentially resides in the vicinity of chromosome 19 in 3D host genome upon infection. Cell Reports, 2021, 35, 109288.	6.4	24
8	A Cross-Species Reactive TIGIT-Blocking Antibody Fc Dependently Confers Potent Antitumor Effects. Journal of Immunology, 2020, 205, 2156-2168.	0.8	13
9	Chromosomal translocation-derived aberrant Rab22a drives metastasis of osteosarcoma. Nature Cell Biology, 2020, 22, 868-881.	10.3	35
10	Novel Abs targeting the Nâ€terminus of fibroblast growth factorÂ19 inhibit hepatocellular carcinoma growth without bileâ€acidâ€related sideâ€effects. Cancer Science, 2020, 111, 1750-1760.	3.9	5
11	Increased sulfation of bile acids in mice and human subjects with sodium taurocholate cotransporting polypeptide deficiency. Journal of Biological Chemistry, 2019, 294, 11853-11862.	3.4	22
12	Down-regulation of cell membrane localized NTCP expression in proliferating hepatocytes prevents hepatitis B virus infection. Emerging Microbes and Infections, 2019, 8, 879-894.	6.5	37
13	The p.Ser267Phe variant of sodium taurocholate cotransporting polypeptide (NTCP) supports HBV infection with a low efficiency. Virology, 2018, 522, 168-176.	2.4	16
14	BMI1 and MEL18 Promote Colitis-Associated Cancer inÂMiceÂviaÂREG3B and STAT3. Gastroenterology, 2017, 153, 1607-1620.	1.3	33
15	Structural Determination of the Broadly Reactive Anti-IGHV1-69 Anti-idiotypic Antibody G6 and Its Idiotope. Cell Reports, 2017, 21, 3243-3255.	6.4	13
16	A potent human neutralizing antibody Fc-dependently reduces established HBV infections. ELife, 2017, 6,	6.0	81
17	Down-regulation of NTCP expression by cyclin D1 in hepatitis B virus-related hepatocellular carcinoma has clinical significance. Oncotarget, 2017, 8, 56041-56050.	1.8	20
18	Modification of Three Amino Acids in Sodium Taurocholate Cotransporting Polypeptide Renders Mice Susceptible to Infection with Hepatitis D Virus <i>In Vivo</i> . Journal of Virology, 2016, 90, 8866-8874.	3.4	41

Jianhua Sui

#	Article	IF	CITATIONS
19	Humanized mouse G6 anti-idiotypic monoclonal antibody has therapeutic potential against <i>IGHV1-69</i> germline gene-based B-CLL. MAbs, 2016, 8, 787-798.	5.2	7
20	Hepatitis D Virus Infection of Mice Expressing Human Sodium Taurocholate Co-transporting Polypeptide. PLoS Pathogens, 2015, 11, e1004840.	4.7	99
21	NTCP opens the door for hepatitis B virus infection. Antiviral Research, 2015, 121, 24-30.	4.1	70
22	Human Coronavirus HKU1 Spike Protein Uses <i>O</i> -Acetylated Sialic Acid as an Attachment Receptor Determinant and Employs Hemagglutinin-Esterase Protein as a Receptor-Destroying Enzyme. Journal of Virology, 2015, 89, 7202-7213.	3.4	218
23	Reconstitution of the receptor-binding motif of the SARS coronavirus. Protein Engineering, Design and Selection, 2015, 28, gzv052.	2.1	16
24	Molecular Signatures of Hemagglutinin Stem-Directed Heterosubtypic Human Neutralizing Antibodies against Influenza A Viruses. PLoS Pathogens, 2014, 10, e1004103.	4.7	121
25	Effects of Human Anti-Spike Protein Receptor Binding Domain Antibodies on Severe Acute Respiratory Syndrome Coronavirus Neutralization Escape and Fitness. Journal of Virology, 2014, 88, 13769-13780.	3.4	71
26	Viral Entry of Hepatitis B and D Viruses and Bile Salts Transportation Share Common Molecular Determinants on Sodium Taurocholate Cotransporting Polypeptide. Journal of Virology, 2014, 88, 3273-3284.	3.4	210
27	Molecular Determinants of Hepatitis B and D Virus Entry Restriction in Mouse Sodium Taurocholate Cotransporting Polypeptide. Journal of Virology, 2013, 87, 7977-7991.	3.4	167
28	Sodium Taurocholate Cotransporting Polypeptide Mediates Woolly Monkey Hepatitis B Virus Infection of Tupaia Hepatocytes. Journal of Virology, 2013, 87, 7176-7184.	3.4	57
29	Sodium taurocholate cotransporting polypeptide is a functional receptor for human hepatitis B and D virus. ELife, 2012, 1, e00049.	6.0	1,621
30	Wide Prevalence of Heterosubtypic Broadly Neutralizing Human Anti-Influenza A Antibodies. Clinical Infectious Diseases, 2011, 52, 1003-1009.	5.8	122
31	Structural and functional bases for broad-spectrum neutralization of avian and human influenza A viruses. Nature Structural and Molecular Biology, 2009, 16, 265-273.	8.2	1,075
32	Broadening of Neutralization Activity to Directly Block a Dominant Antibody-Driven SARS-Coronavirus Evolution Pathway. PLoS Pathogens, 2008, 4, e1000197.	4.7	79
33	Histone deacetylase inhibitor trichostatin A and proteasome inhibitor PS-341 synergistically induce apoptosis in pancreatic cancer cells. Biochemical and Biophysical Research Communications, 2006, 348, 1245-1253.	2.1	57
34	Mapping a Neutralizing Epitope on the SARS Coronavirus Spike Protein: Computational Prediction Based on Affinity-selected Peptides. Journal of Molecular Biology, 2006, 359, 190-201.	4.2	32
35	Structural Basis of Neutralization by a Human Anti-severe Acute Respiratory Syndrome Spike Protein Antibody, 80R. Journal of Biological Chemistry, 2006, 281, 34610-34616.	3.4	201
36	Receptor and viral determinants of SARS-coronavirus adaptation to human ACE2. EMBO Journal, 2005, 24, 1634-1643.	7.8	892

Jianhua Sui

#	Article	IF	CITATIONS
37	Predominant Bcl-XL Knockdown Disables Antiapoptotic Mechanisms: Tumor Necrosis Factor–Related Apoptosis-Inducing Ligand–Based Triple Chemotherapy Overcomes Chemoresistance in Pancreatic Cancer Cells <i>In vitro</i> . Cancer Research, 2005, 65, 2344-2352.	0.9	113
38	Evaluation of Human Monoclonal Antibody 80R for Immunoprophylaxis of Severe Acute Respiratory Syndrome by an Animal Study, Epitope Mapping, and Analysis of Spike Variants. Journal of Virology, 2005, 79, 5900-5906.	3.4	145
39	Potent neutralization of severe acute respiratory syndrome (SARS) coronavirus by a human mAb to S1 protein that blocks receptor association. Proceedings of the National Academy of Sciences of the United States of America, 2004, 101, 2536-2541.	7.1	543
40	Identification of CD4 and transferrin receptor antibodies by CXCR4 antibody-guided Pathfinder selection. FEBS Journal, 2003, 270, 4497-4506.	0.2	12
41	Angiotensin-converting enzyme 2 is a functional receptor for the SARS coronavirus. Nature, 2003, 426, 450-454.	27.8	5,168
42	Evidence against Ebola Virus sGP Binding to Human Neutrophils by a Specific Receptor. Virology, 2002, 303, 9-14.	2.4	27