List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3003318/publications.pdf Version: 2024-02-01

		9264	17592
219	17,542	74	121
papers	citations	h-index	g-index
222	222	222	14315
all docs	docs citations	times ranked	citing authors

<u> Сынгым Ми</u>

#	Article	IF	CITATIONS
1	Polydopamine modified CuS@HKUST for rapid sterilization through enhanced photothermal property and photocatalytic ability. Rare Metals, 2022, 41, 663-672.	7.1	64
2	Flower-like CuS/graphene oxide with photothermal and enhanced photocatalytic effect for rapid bacteria-killing using visible light. Rare Metals, 2022, 41, 639-649.	7.1	61
3	Photothermal therapy with regulated Nrf2/NF-κB signaling pathway for treating bacteria-induced periodontitis. Bioactive Materials, 2022, 9, 428-445.	15.6	52
4	Formation of a ZnO nanorods-patterned coating with strong bactericidal capability and quantitative evaluation of the contribution of nanorods-derived puncture and ROS-derived killing. Bioactive Materials, 2022, 11, 181-191.	15.6	18
5	A review on current research status of the surface modification of Zn-based biodegradable metals. Bioactive Materials, 2022, 7, 192-216.	15.6	72
6	Magnesium cationic cue enriched interfacial tissue microenvironment nurtures the osseointegration of gamma-irradiated allograft bone. Bioactive Materials, 2022, 10, 32-47.	15.6	10
7	Amorphous FeNiNbPC nanoprous structure for efficient and stable electrochemical oxygen evolution. Journal of Colloid and Interface Science, 2022, 608, 1973-1982.	9.4	13
8	Theory-screened MOF-based single-atom catalysts for facile and effective therapy of biofilm-induced periodontitis. Chemical Engineering Journal, 2022, 431, 133279.	12.7	31
9	The enhanced photocatalytic sterilization of MOF-Based nanohybrid for rapid and portable therapy of bacteria-infected open wounds. Bioactive Materials, 2022, 13, 200-211.	15.6	47
10	Oxygen Vacanciesâ€Rich Heterojunction of Ti ₃ C ₂ /BiOBr for Photoâ€Excited Antibacterial Textiles. Small, 2022, 18, e2104448.	10.0	31
11	Using tea nanoclusters as β-lactamase inhibitors to cure multidrug-resistant bacterial pneumonia: A promising therapeutic strategy by Chinese materioherbology. Fundamental Research, 2022, 2, 496-504.	3.3	11
12	Divalent metal cations stimulate skeleton interoception for new bone formation in mouse injury models. Nature Communications, 2022, 13, 535.	12.8	33
13	Photo-excited antibacterial poly(ƕcaprolactone)@MoS2/ZnS hybrid nanofibers. Chemical Engineering Journal, 2022, 434, 134764.	12.7	13
14	Sulfur-regulated defect engineering for enhanced ultrasonic piezocatalytic therapy of bacteria-infected bone defects. Chemical Engineering Journal, 2022, 435, 134624.	12.7	55
15	Noble metal-based nanomaterials as antibacterial agents. Journal of Alloys and Compounds, 2022, 904, 164091.	5.5	56
16	2D Molybdenum Sulfideâ€Based Materials for Photoâ€Excited Antibacterial Application. Advanced Healthcare Materials, 2022, 11, e2200360.	7.6	24
17	Recent progress of photo-excited antibacterial materials via chemical vapor deposition. Chemical Engineering Journal, 2022, 437, 135401.	12.7	15
18	Surface photodynamic ion sterilization of ITO-Cu2O/ZnO preventing touch infection. Journal of Materials Science and Technology, 2022, 122, 10-19.	10.7	10

#	Article	IF	CITATIONS
19	Eco-friendly bacteria-killing by nanorods through mechano-puncture with top selectivity. Bioactive Materials, 2022, 15, 173-184.	15.6	10
20	Simultaneously enhancing the photocatalytic and photothermal effect of NH2-MIL-125-GO-Pt ternary heterojunction for rapid therapy of bacteria-infected wounds. Bioactive Materials, 2022, 18, 421-432.	15.6	42
21	Nanotopography Sequentially Mediates Human Mesenchymal Stem Cell-Derived Small Extracellular Vesicles for Enhancing Osteogenesis. ACS Nano, 2022, 16, 415-430.	14.6	18
22	The highly effective therapy of ovarian cancer by Bismuth-doped oxygen-deficient BaTiO3 with enhanced sono-piezocatalytic effects. Chemical Engineering Journal, 2022, 442, 136380.	12.7	27
23	Reversing Multidrugâ€Resistant <i>Escherichia coli</i> by Compromising Its BAM Biogenesis and Enzymatic Catalysis through Microwave Hyperthermia Therapy. Advanced Functional Materials, 2022, 32, .	14.9	7
24	Electrodeposition of self-supported NiMo amorphous coating as an efficient and stable catalyst for hydrogen evolution reaction. Rare Metals, 2022, 41, 2624-2632.	7.1	29
25	A Three-Dimensional Cement Quantification Method for Decision Prediction of Vertebral Recompression after Vertebroplasty. Computational and Mathematical Methods in Medicine, 2022, 2022, 1-14.	1.3	1
26	Microwave assisted antibacterial action of Garcinia nanoparticles on Gram-negative bacteria. Nature Communications, 2022, 13, 2461.	12.8	49
27	A smart strategy of "laser-direct-writing―to achieve scalable fabrication of self-supported MoNi ₄ /Ni catalysts for efficient and durable hydrogen evolution reaction. Journal of Materials Chemistry A, 2022, 10, 12722-12732.	10.3	8
28	Interface Polarization Strengthened Microwave Catalysis of MoS ₂ /FeS/Rhein for the Therapy of Bacteriaâ€Infected Osteomyelitis. Advanced Functional Materials, 2022, 32, .	14.9	26
29	Two-dimensional antibacterial materials. Progress in Materials Science, 2022, 130, 100976.	32.8	46
30	Atomic-layer Fe2O3-modified 2D porphyrinic metal-organic framework for enhanced photocatalytic disinfection through electron-withdrawing effect. Applied Catalysis B: Environmental, 2022, 317, 121701.	20.2	22
31	Eco-friendly and degradable red phosphorus nanoparticles for rapid microbial sterilization under visible light. Journal of Materials Science and Technology, 2021, 67, 70-79.	10.7	31
32	A self-healing coating containing curcumin for osteoimmunomodulation to ameliorate osseointegration. Chemical Engineering Journal, 2021, 403, 126323.	12.7	40
33	Photothermy-strengthened photocatalytic activity of polydopamine-modified metal-organic frameworks for rapid therapy of bacteria-infected wounds. Journal of Materials Science and Technology, 2021, 62, 83-95.	10.7	91
34	Photo-controlled degradation of PLGA/Ti3C2 hybrid coating on Mg-Sr alloy using near infrared light. Bioactive Materials, 2021, 6, 568-578.	15.6	30
35	Stepwise 3D-spatio-temporal magnesium cationic niche: Nanocomposite scaffold mediated microenvironment for modulating intramembranous ossification. Bioactive Materials, 2021, 6, 503-519.	15.6	27
36	In situ synthesis of a novel Mn3O4/g-C3N4 p-n heterostructure photocatalyst for water splitting. Journal of Colloid and Interface Science, 2021, 586, 778-784.	9.4	52

#	Article	IF	CITATIONS
37	Self-supported Ni3Se2@NiFe layered double hydroxide bifunctional electrocatalyst for overall water splitting. Journal of Colloid and Interface Science, 2021, 587, 79-89.	9.4	89
38	Ag3PO4 decorated black urchin-like defective TiO2 for rapid and long-term bacteria-killing under visible light. Bioactive Materials, 2021, 6, 1575-1587.	15.6	85
39	Ultrasonic Interfacial Engineering of Red Phosphorous–Metal for Eradicating MRSA Infection Effectively. Advanced Materials, 2021, 33, e2006047.	21.0	93
40	Enhanced photocatalytic and photothermal properties of ecofriendly metal-organic framework heterojunction for rapid sterilization. Chemical Engineering Journal, 2021, 405, 126730.	12.7	104
41	Antibacterial Hybrid Hydrogels. Macromolecular Bioscience, 2021, 21, e2000252.	4.1	105
42	Rapid bacterial elimination achieved by sonodynamic Au@Cu ₂ O hybrid nanocubes. Nanoscale, 2021, 13, 15699-15710.	5.6	38
43	Recent Progress in Photocatalytic Antibacterial. ACS Applied Bio Materials, 2021, 4, 3909-3936.	4.6	100
44	The recent progress on metal–organic frameworks for phototherapy. Chemical Society Reviews, 2021, 50, 5086-5125.	38.1	262
45	Photothermal-controlled sustainable degradation of protective coating modified Mg alloy using near-infrared light. Rare Metals, 2021, 40, 2538-2551.	7.1	14
46	Interfacial engineering of Bi2S3/Ti3C2Tx MXene based on work function for rapid photo-excited bacteria-killing. Nature Communications, 2021, 12, 1224.	12.8	283
47	Highly efficient nanoporous CoBP electrocatalyst for hydrogen evolution reaction. Rare Metals, 2021, 40, 1031-1039.	7.1	42
48	Dual-phase nanostructuring as a route to flexible nanoporous metals with outstanding comprehensive mechanical properties. Science China Materials, 2021, 64, 2289-2304.	6.3	16
49	Regulation of macrophage polarization through surface topography design to facilitate implant-to-bone osteointegration. Science Advances, 2021, 7, .	10.3	176
50	Spin State Tuning of the Octahedral Sites in Ni–Co-Based Spinel toward Highly Efficient Urea Oxidation Reaction. Journal of Physical Chemistry C, 2021, 125, 9190-9199.	3.1	25
51	Na+ inserted metal-organic framework for rapid therapy of bacteria-infected osteomyelitis through microwave strengthened Fenton reaction and thermal effects. Nano Today, 2021, 37, 101090.	11.9	77
52	TRPM7 kinase-mediated immunomodulation in macrophage plays a central role in magnesium ion-induced bone regeneration. Nature Communications, 2021, 12, 2885.	12.8	118
53	Single-Atom Catalysis for Efficient Sonodynamic Therapy of Methicillin-Resistant <i>Staphylococcus aureus</i> -Infected Osteomyelitis. ACS Nano, 2021, 15, 10628-10639.	14.6	144
54	Enhanced Nearâ€Infrared Photocatalytic Eradication of MRSA Biofilms and Osseointegration Using Oxide Perovskiteâ€Based P–N Heterojunction. Advanced Science, 2021, 8, e2002211.	11.2	33

#	Article	IF	CITATIONS
55	Nanoporous Nickel–Molybdenum Oxide with an Oxygen Vacancy for Electrocatalytic Nitrogen Fixation under Ambient Conditions. ACS Applied Materials & Interfaces, 2021, 13, 30722-30730.	8.0	34
56	ZIF-67 derived Co@NC/g-C3N4 as a photocatalyst for enhanced water splitting H2 evolution. Environmental Research, 2021, 197, 111002.	7.5	21
57	Rapid bacteria capturing and killing by AgNPs/N-CD@ZnO hybrids strengthened photo-responsive xerogel for rapid healing of bacteria-infected wounds. Chemical Engineering Journal, 2021, 414, 128805.	12.7	44
58	Graphitic carbon nitride-based materials for photocatalytic antibacterial application. Materials Science and Engineering Reports, 2021, 145, 100610.	31.8	145
59	Enhanced Electrocatalysis for Hydrogen Evolution over a Nanoporous NiAlTi/Al ₃ Ti Hybrid. ACS Applied Energy Materials, 2021, 4, 7579-7588.	5.1	6
60	An Engineered Pseudoâ€Macrophage for Rapid Treatment of Bacteriaâ€Infected Osteomyelitis via Microwaveâ€Excited Antiâ€Infection and Immunoregulation. Advanced Materials, 2021, 33, e2102926.	21.0	87
61	Regulation of extracellular bioactive cations in bone tissue microenvironment induces favorable osteoimmune conditions to accelerate in situ bone regeneration. Bioactive Materials, 2021, 6, 2315-2330.	15.6	69
62	Sequential activation of heterogeneous macrophage phenotypes is essential for biomaterials-induced bone regeneration. Biomaterials, 2021, 276, 121038.	11.4	60
63	2D MOF Periodontitis Photodynamic Ion Therapy. Journal of the American Chemical Society, 2021, 143, 15427-15439.	13.7	161
64	Material-herbology: An effective and safe strategy to eradicate lethal viral-bacterial pneumonia. Matter, 2021, 4, 3030-3048.	10.0	20
65	Electronic Structure Modulation of Nanoporous Cobalt Phosphide by Carbon Doping for Alkaline Hydrogen Evolution Reaction. Advanced Functional Materials, 2021, 31, 2107333.	14.9	104
66	The enhanced near-infrared photocatalytic and photothermal effects of MXene-based heterojunction for rapid bacteria-killing. Applied Catalysis B: Environmental, 2021, 297, 120500.	20.2	68
67	A self-supported FeNi layered double hydroxide anode with high activity and long-term stability for efficient oxygen evolution reaction. Sustainable Energy and Fuels, 2021, 5, 3205-3212.	4.9	3
68	A lithium-doped surface inspires immunomodulatory functions for enhanced osteointegration through PI3K/AKT signaling axis regulation. Biomaterials Science, 2021, 9, 8202-8220.	5.4	21
69	Photo-Sono Interfacial Engineering Exciting the Intrinsic Property of Herbal Nanomedicine for Rapid Broad-Spectrum Bacteria Killing. ACS Nano, 2021, 15, 18505-18519.	14.6	61
70	Self-activating anti-infection implant. Nature Communications, 2021, 12, 6907.	12.8	77
71	Near-infrared light controlled fast self-healing protective coating on magnesium alloy. Corrosion Science, 2020, 163, 108257.	6.6	55
72	Photo-responsive chitosan/Ag/MoS2 for rapid bacteria-killing. Journal of Hazardous Materials, 2020, 383, 121122.	12.4	153

#	Article	IF	CITATIONS
73	An UV to NIR-driven platform based on red phosphorus/graphene oxide film for rapid microbial inactivation. Chemical Engineering Journal, 2020, 383, 123088.	12.7	52
74	Enhanced photocatalytic activity and photothermal effects of cu-doped metal-organic frameworks for rapid treatment of bacteria-infected wounds. Applied Catalysis B: Environmental, 2020, 261, 118248.	20.2	255
75	Modulation of the mechanosensing of mesenchymal stem cells by laser-induced patterning for the acceleration of tissue reconstruction through the Wnt/β-catenin signaling pathway activation. Acta Biomaterialia, 2020, 101, 152-167.	8.3	51
76	Preparation and physicochemical properties of an injectable alginate-based hydrogel by the regulated release of divalent ions via the hydrolysis of <scp>d</scp> -glucono- δ -lactone. Journal of Biomaterials Applications, 2020, 34, 891-901.	2.4	6
77	Zn2+-assisted photothermal therapy for rapid bacteria-killing using biodegradable humic acid encapsulated MOFs. Colloids and Surfaces B: Biointerfaces, 2020, 188, 110781.	5.0	41
78	Eco-friendly Hybrids of Carbon Quantum Dots Modified MoS ₂ for Rapid Microbial Inactivation by Strengthened Photocatalysis. ACS Sustainable Chemistry and Engineering, 2020, 8, 534-542.	6.7	53
79	Rutile-Coated B-Phase TiO ₂ Heterojunction Nanobelts for Photocatalytic H ₂ Evolution. ACS Applied Nano Materials, 2020, 3, 10349-10359.	5.0	18
80	Photoresponsive Materials for Antibacterial Applications. Cell Reports Physical Science, 2020, 1, 100245.	5.6	102
81	Photoelectrons Mediating Angiogenesis and Immunotherapy through Heterojunction Film for Noninvasive Disinfection. Advanced Science, 2020, 7, 2000023.	11.2	51
82	A tailored positively-charged hydrophobic surface reduces the risk of implant associated infections. Acta Biomaterialia, 2020, 114, 421-430.	8.3	22
83	Treatment of MRSA-infected osteomyelitis using bacterial capturing, magnetically targeted composites with microwave-assisted bacterial killing. Nature Communications, 2020, 11, 4446.	12.8	165
84	Amorphous CoMoO ₄ with Nanoporous Structures for Electrochemical Ammonia Synthesis under Ambient Conditions. ACS Sustainable Chemistry and Engineering, 2020, 8, 19072-19083.	6.7	15
85	A Z-scheme heterojunction of ZnO/CDots/C3N4 for strengthened photoresponsive bacteria-killing and acceleration of wound healing. Journal of Materials Science and Technology, 2020, 57, 1-11.	10.7	74
86	The rapid photoresponsive bacteria-killing of Cu-doped MoS ₂ . Biomaterials Science, 2020, 8, 4216-4224.	5.4	57
87	Overcoming Multidrugâ€Resistant MRSA Using Conventional Aminoglycoside Antibiotics. Advanced Science, 2020, 7, 1902070.	11.2	49
88	Rapid and highly effective bacteria-killing by polydopamine/IR780@MnO2–Ti using near-infrared light. Progress in Natural Science: Materials International, 2020, 30, 677-685.	4.4	12
89	Near-Infrared Light Triggered Phototherapy and Immunotherapy for Elimination of Methicillin-Resistant <i>Staphylococcus aureus</i> Biofilm Infection on Bone Implant. ACS Nano, 2020, 14, 8157-8170.	14.6	133
90	Ce and Er Co-doped TiO2 for rapid bacteria- killing using visible light. Bioactive Materials, 2020, 5, 201-209.	15.6	61

#	Article	IF	CITATIONS
91	Visible light responsive CuS/ protonated g-C3N4 heterostructure for rapid sterilization. Journal of Hazardous Materials, 2020, 393, 122423.	12.4	116
92	ROS induced bactericidal activity of amorphous Zn-doped titanium oxide coatings and enhanced osseointegration in bacteria-infected rat tibias. Acta Biomaterialia, 2020, 107, 313-324.	8.3	64
93	A novel photothermally controlled multifunctional scaffold for clinical treatment of osteosarcoma and tissue regeneration. Materials Today, 2020, 36, 48-62.	14.2	123
94	In-situ sulfuration of Cu-based metal-organic framework for rapid near-infrared light sterilization. Journal of Hazardous Materials, 2020, 390, 122126.	12.4	72
95	Rapid Photo-Sonotherapy for Clinical Treatment of Bacterial Infected Bone Implants by Creating Oxygen Deficiency Using Sulfur Doping. ACS Nano, 2020, 14, 2077-2089.	14.6	182
96	Controllable biodegradation and enhanced osseointegration of ZrO2-nanofilm coated Zn-Li alloy: In vitro and in vivo studies. Acta Biomaterialia, 2020, 105, 290-303.	8.3	47
97	Rapid Sterilization by Photocatalytic Ag ₃ PO ₄ /α-Fe ₂ O ₃ Composites Using Visible Light. ACS Sustainable Chemistry and Engineering, 2020, 8, 2577-2585.	6.7	53
98	Rapid bacteria trapping and killing of metal-organic frameworks strengthened photo-responsive hydrogel for rapid tissue repair of bacterial infected wounds. Chemical Engineering Journal, 2020, 396, 125194.	12.7	142
99	Engineered probiotics biofilm enhances osseointegration via immunoregulation and anti-infection. Science Advances, 2020, 6, .	10.3	82
100	Construction of Bio-functionalized ZnO Coatings on Titanium Implants with Both Self-Antibacterial and Osteoinductive Properties. , 2020, , 169-182.		1
101	Lysozyme-Assisted Photothermal Eradication of Methicillin-Resistant <i>Staphylococcus aureus</i> Infection and Accelerated Tissue Repair with Natural Melanosome Nanostructures. ACS Nano, 2019, 13, 11153-11167.	14.6	74
102	Dual Metal–Organic Framework Heterointerface. ACS Central Science, 2019, 5, 1591-1601.	11.3	108
103	Ag ₂ S@WS ₂ Heterostructure for Rapid Bacteria-Killing Using Near-Infrared Light. ACS Sustainable Chemistry and Engineering, 2019, 7, 14982-14990.	6.7	67
104	<p>Gold nanoparticles-loaded hydroxyapatite composites guide osteogenic differentiation of human mesenchymal stem cells through Wnt/l²-catenin signaling pathway</p> . International Journal of Nanomedicine, 2019, Volume 14, 6151-6163.	6.7	44
105	A near infrared-activated photocatalyst based on elemental phosphorus by chemical vapor deposition. Applied Catalysis B: Environmental, 2019, 258, 117980.	20.2	30
106	Highly Effective and Noninvasive Nearâ€Infrared Eradication of a <i>Staphylococcus aureus</i> Biofilm on Implants by a Photoresponsive Coating within 20 Min. Advanced Science, 2019, 6, 1900599.	11.2	212
107	Superimposed surface plasma resonance effect enhanced the near-infrared photocatalytic activity of Au@Bi2WO6 coating for rapid bacterial killing. Journal of Hazardous Materials, 2019, 380, 120818.	12.4	85
108	A functionalized TiO2/Mg2TiO4 nano-layer on biodegradable magnesium implant enables superior bone-implant integration and bacterial disinfection. Biomaterials, 2019, 219, 119372.	11.4	84

#	Article	IF	CITATIONS
109	Highly Efficient and Self-Standing Nanoporous NiO/Al ₃ Ni ₂ Electrocatalyst for Hydrogen Evolution Reaction. ACS Applied Energy Materials, 2019, 2, 7913-7922.	5.1	38
110	Accelerated Bone Regeneration by Gold-Nanoparticle-Loaded Mesoporous Silica through Stimulating Immunomodulation. ACS Applied Materials & Interfaces, 2019, 11, 41758-41769.	8.0	73
111	Photoelectric-Responsive Extracellular Matrix for Bone Engineering. ACS Nano, 2019, 13, 13581-13594.	14.6	51
112	Ag2S decorated nanocubes with enhanced near-infrared photothermal and photodynamic properties for rapid sterilization. Colloids and Interface Science Communications, 2019, 33, 100201.	4.1	44
113	Rapid Biofilm Elimination on Bone Implants Using Nearâ€Infraredâ€Activated Inorganic Semiconductor Heterostructures. Advanced Healthcare Materials, 2019, 8, e1900835.	7.6	71
114	AgBr Nanoparticles in Situ Growth on 2D MoS ₂ Nanosheets for Rapid Bacteria-Killing and Photodisinfection. ACS Applied Materials & Interfaces, 2019, 11, 34364-34375.	8.0	58
115	A surface-engineered multifunctional TiO2 based nano-layer simultaneously elevates the corrosion resistance, osteoconductivity and antimicrobial property of a magnesium alloy. Acta Biomaterialia, 2019, 99, 495-513.	8.3	38
116	Micro- and Nanohemispherical 3D Imprints Modulate the Osteogenic Differentiation and Mineralization Tendency of Bone Cells. ACS Applied Materials & Interfaces, 2019, 11, 35513-35524.	8.0	16
117	Zinc-doped Prussian blue enhances photothermal clearance of Staphylococcus aureus and promotes tissue repair in infected wounds. Nature Communications, 2019, 10, 4490.	12.8	306
118	Metal–Organic Frameworks Incorporated Polycaprolactone Film for Enhanced Corrosion Resistance and Biocompatibility of Mg Alloy. ACS Sustainable Chemistry and Engineering, 2019, 7, 18114-18124.	6.7	50
119	An amorphous nanoporous PdCuNi-S hybrid electrocatalyst for highly efficient hydrogen production. Applied Catalysis B: Environmental, 2019, 246, 156-165.	20.2	75
120	Longâ€∓erm Prevention of Bacterial Infection and Enhanced Osteoinductivity of a Hybrid Coating with Selective Silver Toxicity. Advanced Healthcare Materials, 2019, 8, e1801465.	7.6	53
121	Enhancing the antibacterial efficacy of low-dose gentamicin with 5 minute assistance of photothermy at 50 ŰC. Biomaterials Science, 2019, 7, 1437-1447.	5.4	56
122	The enhanced photocatalytic properties of MnO2/g-C3N4 heterostructure for rapid sterilization under visible light. Journal of Hazardous Materials, 2019, 377, 227-236.	12.4	122
123	Editorial for rare metals, special issue on biomedical metal implants. Rare Metals, 2019, 38, 475-475.	7.1	4
124	Near-infrared light photocatalysis and photothermy of carbon quantum dots and au nanoparticles loaded titania nanotube array. Materials and Design, 2019, 177, 107845.	7.0	55
125	Local Photothermal/Photodynamic Synergistic Therapy by Disrupting Bacterial Membrane To Accelerate Reactive Oxygen Species Permeation and Protein Leakage. ACS Applied Materials & Interfaces, 2019, 11, 17902-17914.	8.0	149
126	Rapid and Superior Bacteria Killing of Carbon Quantum Dots/ZnO Decorated Injectable Folic Acidâ€Conjugated PDA Hydrogel through Dualâ€Light Triggered ROS and Membrane Permeability. Small, 2019, 15, e1900322.	10.0	180

#	Article	IF	CITATIONS
127	Osseointegration: Longâ€Term Prevention of Bacterial Infection and Enhanced Osteoinductivity of a Hybrid Coating with Selective Silver Toxicity (Adv. Healthcare Mater. 5/2019). Advanced Healthcare Materials, 2019, 8, 1970020.	7.6	4
128	Eradicating Multidrugâ€Resistant Bacteria Rapidly Using a Multi Functional gâ€C ₃ N ₄ @ Bi ₂ S ₃ Nanorod Heterojunction with or without Antibiotics. Advanced Functional Materials, 2019, 29, 1900946.	14.9	136
129	Photocatalysis: Lightâ€Activated Rapid Disinfection by Accelerated Charge Transfer in Red Phosphorus/ZnO Heterointerface (Small Methods 3/2019). Small Methods, 2019, 3, 1970008.	8.6	4
130	The effects of a phytic acid/calcium ion conversion coating on the corrosion behavior and osteoinductivity of a magnesium-strontium alloy. Applied Surface Science, 2019, 484, 511-523.	6.1	35
131	Rapid and Highly Effective Noninvasive Disinfection by Hybrid Ag/CS@MnO ₂ Nanosheets Using Near-Infrared Light. ACS Applied Materials & Interfaces, 2019, 11, 15014-15027.	8.0	86
132	Fundamental Theory of Biodegradable Metals—Definition, Criteria, and Design. Advanced Functional Materials, 2019, 29, 1805402.	14.9	226
133	Lightâ€Activated Rapid Disinfection by Accelerated Charge Transfer in Red Phosphorus/ZnO Heterointerface. Small Methods, 2019, 3, 1900048.	8.6	64
134	"Imitative―click chemistry to form a sticking xerogel for the portable therapy of bacteria-infected wounds. Biomaterials Science, 2019, 7, 5383-5387.	5.4	17
135	A facile fabrication of novel stuff with antibacterial property and osteogenic promotion utilizing red phosphorus and near-infrared light. Bioactive Materials, 2019, 4, 17-21.	15.6	108
136	Repeatable Photodynamic Therapy with Triggered Signaling Pathways of Fibroblast Cell Proliferation and Differentiation To Promote Bacteria-Accompanied Wound Healing. ACS Nano, 2018, 12, 1747-1759.	14.6	303
137	In Situ Disinfection through Photoinspired Radical Oxygen Species Storage and Thermalâ€Triggered Release from Black Phosphorous with Strengthened Chemical Stability. Small, 2018, 14, 1703197.	10.0	127
138	Infection-prevention on Ti implants by controlled drug release from folic acid/ZnO quantum dots sealed titania nanotubes. Materials Science and Engineering C, 2018, 85, 214-224.	7.3	68
139	Electrophoretic Deposited Stable Chitosan@MoS ₂ Coating with Rapid In Situ Bacteriaâ€Killing Ability under Dualâ€Light Irradiation. Small, 2018, 14, e1704347.	10.0	171
140	Nano Ag/ZnO-Incorporated Hydroxyapatite Composite Coatings: Highly Effective Infection Prevention and Excellent Osteointegration. ACS Applied Materials & amp; Interfaces, 2018, 10, 1266-1277.	8.0	127
141	A combined coating strategy based on atomic layer deposition for enhancement of corrosion resistance of AZ31 magnesium alloy. Applied Surface Science, 2018, 434, 1101-1111.	6.1	65
142	Synergistic antibacterial activity of multi components in lysozyme/chitosan/silver/hydroxyapatite hybrid coating. Materials and Design, 2018, 139, 351-362.	7.0	72
143	Rapid Sterilization and Accelerated Wound Healing Using Zn ²⁺ and Graphene Oxide Modified g ₃ N ₄ under Dual Light Irradiation. Advanced Functional Materials, 2018, 28, 1800299.	14.9	246
144	Controlled and sustained drug release performance of calcium sulfate cement porous TiO ₂ microsphere composites. International Journal of Nanomedicine, 2018, Volume 13, 7491-7501.	6.7	10

#	Article	IF	CITATIONS
145	Noninvasive rapid bacteria-killing and acceleration of wound healing through photothermal/photodynamic/copper ion synergistic action of a hybrid hydrogel. Biomaterials Science, 2018, 6, 2110-2121.	5.4	168
146	Ag/AgBr-loaded mesoporous silica for rapid sterilization and promotion of wound healing. Biomaterials Science, 2018, 6, 1735-1744.	5.4	65
147	Construction of perfluorohexane/IR780@liposome coating on Ti for rapid bacteria killing under permeable near infrared light. Biomaterials Science, 2018, 6, 2460-2471.	5.4	28
148	Controlled-temperature photothermal and oxidative bacteria killing and acceleration of wound healing by polydopamine-assisted Au-hydroxyapatite nanorods. Acta Biomaterialia, 2018, 77, 352-364.	8.3	180
149	Precisely controlled delivery of magnesium ions thru sponge-like monodisperse PLGA/nano-MgO-alginate core-shell microsphere device to enable in-situ bone regeneration. Biomaterials, 2018, 174, 1-16.	11.4	140
150	Tuning the Bandgap of Photo-Sensitive Polydopamine/Ag ₃ PO ₄ /Graphene Oxide Coating for Rapid, Noninvasive Disinfection of Implants. ACS Central Science, 2018, 4, 724-738.	11.3	227
151	Rapid Biofilm Eradication on Bone Implants Using Red Phosphorus and Nearâ€Infrared Light. Advanced Materials, 2018, 30, e1801808.	21.0	364
152	Construction of N-halamine labeled silica/zinc oxide hybrid nanoparticles for enhancing antibacterial ability of Ti implants. Materials Science and Engineering C, 2017, 76, 50-58.	7.3	37
153	Functionalized Polymeric Membrane with Enhanced Mechanical and Biological Properties to Control the Degradation of Magnesium Alloy. Advanced Healthcare Materials, 2017, 6, 1601269.	7.6	46
154	Controlled release and biocompatibility of polymer/titania nanotube array system on titanium implants. Bioactive Materials, 2017, 2, 44-50.	15.6	54
155	Construction of poly(lactic-co-glycolic acid)/ZnO nanorods/Ag nanoparticles hybrid coating on Ti implants for enhanced antibacterial activity and biocompatibility. Materials Science and Engineering C, 2017, 79, 629-637.	7.3	82
156	Sr/ZnO doped titania nanotube array: An effective surface system with excellent osteoinductivity and self-antibacterial activity. Materials and Design, 2017, 130, 403-412.	7.0	40
157	Porous Iron-Carboxylate Metal–Organic Framework: A Novel Bioplatform with Sustained Antibacterial Efficacy and Nontoxicity. ACS Applied Materials & Interfaces, 2017, 9, 19248-19257.	8.0	123
158	Atomic layer deposited ZrO2 nanofilm on Mg-Sr alloy for enhanced corrosion resistance and biocompatibility. Acta Biomaterialia, 2017, 58, 515-526.	8.3	80
159	Metal Ion Coordination Polymer-Capped pH-Triggered Drug Release System on Titania Nanotubes for Enhancing Self-antibacterial Capability of Ti Implants. ACS Biomaterials Science and Engineering, 2017, 3, 816-825.	5.2	74
160	The controlled drug release by pH-sensitive molecularly imprinted nanospheres for enhanced antibacterial activity. Materials Science and Engineering C, 2017, 77, 84-91.	7.3	45
161	Biofunctionalization of carbon nanotubes/chitosan hybrids on Ti implants by atom layer deposited ZnO nanostructures. Applied Surface Science, 2017, 400, 14-23.	6.1	96
162	Construction of poly (vinyl alcohol)/poly (lactide-glycolide acid)/vancomycin nanoparticles on titanium for enhancing the surface self-antibacterial activity and cytocompatibility. Colloids and Surfaces B: Biointerfaces, 2017, 151, 165-177.	5.0	73

#	Article	IF	CITATIONS
163	Balancing Bacteria–Osteoblast Competition through Selective Physical Puncture and Biofunctionalization of ZnO/Polydopamine/Arginine-Glycine-Aspartic Acid-Cysteine Nanorods. ACS Nano, 2017, 11, 11250-11263.	14.6	230
164	Tannic Acid/Fe ³⁺ /Ag Nanofilm Exhibiting Superior Photodynamic and Physical Antibacterial Activity. ACS Applied Materials & Interfaces, 2017, 9, 39657-39671.	8.0	76
165	Photo-Inspired Antibacterial Activity and Wound Healing Acceleration by Hydrogel Embedded with Ag/Ag@AgCl/ZnO Nanostructures. ACS Nano, 2017, 11, 9010-9021.	14.6	591
166	Synergistic Bacteria Killing through Photodynamic and Physical Actions of Graphene Oxide/Ag/Collagen Coating. ACS Applied Materials & Interfaces, 2017, 9, 26417-26428.	8.0	223
167	Dopamine Modified Organic–Inorganic Hybrid Coating for Antimicrobial and Osteogenesis. ACS Applied Materials & Interfaces, 2016, 8, 33972-33981.	8.0	141
168	Surface functionalization of biomaterials by radical polymerization. Progress in Materials Science, 2016, 83, 191-235.	32.8	120
169	Design of magnesium alloys with controllable degradation for biomedical implants: From bulk to surface. Acta Biomaterialia, 2016, 45, 2-30.	8.3	306
170	The modulation of stem cell behaviors by functionalized nanoceramic coatings on Ti-based implants. Bioactive Materials, 2016, 1, 65-76.	15.6	25
171	Biomedical Applications of Functionalized ZnO Nanomaterials: from Biosensors to Bioimaging. Advanced Materials Interfaces, 2016, 3, 1500494.	3.7	138
172	Engineering Bacillus licheniformis for the production of meso-2,3-butanediol. Biotechnology for Biofuels, 2016, 9, 117.	6.2	79
173	Antibacterial Activity of Silver Doped Titanate Nanowires on Ti Implants. ACS Applied Materials & Interfaces, 2016, 8, 16584-16594.	8.0	102
174	Development of novel implants with self-antibacterial performance through in-situ growth of 1D ZnO nanowire. Colloids and Surfaces B: Biointerfaces, 2016, 141, 623-633.	5.0	23
175	Plasma Surface Functionalized Polyetheretherketone for Enhanced Osseo-Integration at Bone-Implant Interface. ACS Applied Materials & Interfaces, 2016, 8, 3901-3911.	8.0	64
176	Corrosion resistance of dicalcium phosphate dihydrate/poly(lactic-co-glycolic acid) hybrid coating on AZ31 magnesium alloy. Corrosion Science, 2016, 102, 209-221.	6.6	86
177	Controlled chondrogenesis from adipose-derived stem cells by recombinant transforming growth factor-β3 fusion protein in peptide scaffolds. Acta Biomaterialia, 2015, 11, 191-203.	8.3	31
178	Enhanced Bioactivity of Biomedical NiTi Through Surface Plasma Polymerization. Nanoscience and Nanotechnology Letters, 2015, 7, 220-225.	0.4	6
179	Self-Assembled Glucose and Thermo Dual-Responsive Micelles of an Amphiphilic Graft Copolymer. International Journal of Polymeric Materials and Polymeric Biomaterials, 2014, 63, 115-122.	3.4	6

180 Nanomaterials: Functionalized TiO2Based Nanomaterials for Biomedical Applications (Adv. Funct.) Tj ETQq0 0 0 rgBT /Overlock 10 Tf 50

#	Article	IF	CITATIONS
181	Self-assembled magnetic fluorescent polymeric micelles for magnetic resonance and optical imaging. Biomaterials, 2014, 35, 344-355.	11.4	67
182	Surface-Dependent Self-Assembly of Conducting Polypyrrole Nanotube Arrays in Template-Free Electrochemical Polymerization. ACS Applied Materials & Interfaces, 2014, 6, 10946-10951.	8.0	30
183	Polymeric Nanoarchitectures on Ti-Based Implants for Antibacterial Applications. ACS Applied Materials & Interfaces, 2014, 6, 17323-17345.	8.0	84
184	Functionalized TiO ₂ Based Nanomaterials for Biomedical Applications. Advanced Functional Materials, 2014, 24, 5464-5481.	14.9	208
185	Biomimetic porous scaffolds for bone tissue engineering. Materials Science and Engineering Reports, 2014, 80, 1-36.	31.8	854
186	Nanostructured TiO2 for energy conversion and storage. RSC Advances, 2013, 3, 24758.	3.6	105
187	Magnetic, fluorescent, and thermo-responsive Fe3O4/rare earth incorporated poly(St-NIPAM) core–shell colloidal nanoparticles in multimodal optical/magnetic resonance imaging probes. Biomaterials, 2013, 34, 2296-2306.	11.4	85
188	InÂvivo stimulation of bone formation by aluminum and oxygen plasma surface-modified magnesium implants. Biomaterials, 2013, 34, 9863-9876.	11.4	99
189	Low-modulus Mg/PCL hybrid bone substitute for osteoporotic fracture fixation. Biomaterials, 2013, 34, 7016-7032.	11.4	112
190	Synthesis of silver-incorporated hydroxyapatite nanocomposites for antimicrobial implant coatings. Applied Surface Science, 2013, 273, 748-757.	6.1	77
191	Surface nano-architectures and their effects on the mechanical properties and corrosion behavior of Ti-based orthopedic implants. Surface and Coatings Technology, 2013, 233, 13-26.	4.8	65
192	Effects of Carbon and Nitrogen Plasma Immersion Ion Implantation on In vitro and In vivo Biocompatibility of Titanium Alloy. ACS Applied Materials & Interfaces, 2013, 5, 1510-1516.	8.0	81
193	Wear mechanism and tribological characteristics of porous NiTi shape memory alloy for bone scaffold. Journal of Biomedical Materials Research - Part A, 2013, 101A, 2586-2601.	4.0	22
194	Production of Three-Dimensional Hierarchical Nano Ti-Based Metals Scaffolds for Bone Tissue Grafts. , 2012, , 69-82.		0
195	Retardation of surface corrosion of biodegradable magnesium-based materials by aluminum ion implantation. Applied Surface Science, 2012, 258, 7651-7657.	6.1	59
196	Superelastic Porous NiTi with Adjustable Porosities Synthesized by Powder Metallurgical Method. Journal of Materials Engineering and Performance, 2012, 21, 2553-2558.	2.5	8
197	Wear Properties of Porous NiTi Orthopedic Shape Memory Alloy. Journal of Materials Engineering and Performance, 2012, 21, 2622-2627.	2.5	10
198	Magnetite-loaded fluorine-containing polymeric micelles for magnetic resonance imaging and drug delivery. Biomaterials, 2012, 33, 3013-3024.	11.4	136

#	Article	IF	CITATIONS
199	Fluorine-containing pH-responsive core/shell microgel particles: preparation, characterization, and their applications in controlled drug release. Colloid and Polymer Science, 2012, 290, 349-357.	2.1	19
200	Plasma-Modified Biomaterials for Self-Antimicrobial Applications. ACS Applied Materials & Interfaces, 2011, 3, 2851-2860.	8.0	61
201	Rapid degradation of biomedical magnesium induced by zinc ion implantation. Materials Letters, 2011, 65, 661-663.	2.6	47
202	Preparation, characterization of cationic terbium luminescent copolymer and its interaction with DNA. Colloid and Polymer Science, 2011, 289, 1459-1468.	2.1	5
203	Hydrogen release from titanium hydride in foaming of orthopedic NiTi scaffolds. Acta Biomaterialia, 2011, 7, 1387-1397.	8.3	31
204	Relationship between osseointegration and superelastic biomechanics in porous NiTi scaffolds. Biomaterials, 2011, 32, 330-338.	11.4	103
205	Hollow chitosan–silica nanospheres as pH-sensitive targeted delivery carriers in breast cancer therapy. Biomaterials, 2011, 32, 4976-4986.	11.4	245
206	Synthesis and characterization of novel highly branched block copoly(urethane-imide)s based on pentaerythritol, different diisocyanate and aromatic dianhydride. Journal of Applied Polymer Science, 2010, 118, 99-104.	2.6	5
207	Cationic fluorine-containing amphiphilic graft copolymers as DNA carriers. Biomaterials, 2010, 31, 2673-2685.	11.4	63
208	Synthesis and characterization of fluorescent copolymer containing rare earth metal complex and its interaction with DNA. Journal of Polymer Science Part A, 2010, 48, 5961-5967.	2.3	13
209	Corrosion products and mechanism on NiTi shape memory alloy in physiological environment. Journal of Materials Research, 2010, 25, 350-358.	2.6	53
210	Electrochemical Stability of Orthopedic Porous NiTi Shape Memory Alloys Treated by Different Surface Modification Techniques. Journal of the Electrochemical Society, 2009, 156, C187.	2.9	12
211	Nickel release behavior and surface characteristics of porous NiTi shape memory alloy modified by different chemical processes. Journal of Biomedical Materials Research - Part A, 2009, 89A, 483-489.	4.0	14
212	Synthesis and properties of fluorineâ€containing amphiphilic graft copolymer P(HFMA)â€gâ€P(SPEG). Journal of Polymer Science Part A, 2009, 47, 4895-4907.	2.3	24
213	Fabrication and Surface Modification of Porous Nano-Structured NiTi Orthopedic Scaffolds for Bone Implants. Materials Research Society Symposia Proceedings, 2009, 1181, 7.	0.1	1
214	In vitro bioactivity and osteoblast response on chemically modified biomedical porous NiTi synthesized by capsule-free hot isostatic pressing. Surface and Coatings Technology, 2008, 202, 2458-2462.	4.8	12
215	A Biomimetic Hierarchical Scaffold: Natural Growth of Nanotitanates on Three-Dimensional Microporous Ti-Based Metals. Nano Letters, 2008, 8, 3803-3808.	9.1	124
216	Investigation of plasma immersion ion implantation of nickel-titanium rod by multiple-grid particle-in-cell simulation. Journal of Applied Physics, 2008, 103, 053308.	2.5	7

#	Article	IF	CITATIONS
217	Nickel release behavior, cytocompatibility, and superelasticity of oxidized porous single-phase NiTi. Journal of Biomedical Materials Research - Part A, 2007, 81A, 948-955.	4.0	41
218	Pore formation mechanism and characterization of porous NiTi shape memory alloys synthesized by capsule-free hot isostatic pressing. Acta Materialia, 2007, 55, 3437-3451.	7.9	86
219	Structure and wear properties of NiTi modified by nitrogen plasma immersion ion implantation. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2007, 444, 192-197.	5.6	21