## Megan L Shaw

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3001859/publications.pdf Version: 2024-02-01



MECANIL SHANA

| #  | Article                                                                                                                                                                                                   | IF   | CITATIONS |
|----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 1  | Enisamium Reduces Influenza Virus Shedding and Improves Patient Recovery by Inhibiting Viral RNA<br>Polymerase Activity. Antimicrobial Agents and Chemotherapy, 2021, 65, .                               | 3.2  | 10        |
| 2  | Functional landscape of SARS-CoV-2 cellular restriction. Molecular Cell, 2021, 81, 2656-2668.e8.                                                                                                          | 9.7  | 137       |
| 3  | An Influenza Virus Entry Inhibitor Targets Class II PI3 Kinase and Synergizes with Oseltamivir. ACS<br>Infectious Diseases, 2019, 5, 1779-1793.                                                           | 3.8  | 17        |
| 4  | Baloxavir marboxil: the new influenza drug on the market. Current Opinion in Virology, 2019, 35, 14-18.                                                                                                   | 5.4  | 111       |
| 5  | SMARCA2-regulated host cell factors are required for MxA restriction of influenza A viruses.<br>Scientific Reports, 2018, 8, 2092.                                                                        | 3.3  | 12        |
| 6  | Broad Spectrum Inhibitor of Influenza A and B Viruses Targeting the Viral Nucleoprotein. ACS Infectious Diseases, 2018, 4, 146-157.                                                                       | 3.8  | 19        |
| 7  | Paramyxovirus V Proteins Interact with the RIG-I/TRIM25 Regulatory Complex and Inhibit RIG-I Signaling.<br>Journal of Virology, 2018, 92, .                                                               | 3.4  | 60        |
| 8  | Nucleolar Relocalization of RBM14 by Influenza A Virus NS1 Protein. MSphere, 2018, 3, .                                                                                                                   | 2.9  | 8         |
| 9  | Influenza. Nature Reviews Disease Primers, 2018, 4, 3.                                                                                                                                                    | 30.5 | 880       |
| 10 | Transcription Elongation Can Affect Genome 3D Structure. Cell, 2018, 174, 1522-1536.e22.                                                                                                                  | 28.9 | 369       |
| 11 | The Next Wave of Influenza Drugs. ACS Infectious Diseases, 2017, 3, 691-694.                                                                                                                              | 3.8  | 32        |
| 12 | Role of Host Genes in Influenza Virus Replication. Current Topics in Microbiology and Immunology, 2017, 419, 151-189.                                                                                     | 1.1  | 22        |
| 13 | Meta- and Orthogonal Integration of Influenza "OMICs―Data Defines a Role for UBR4 in Virus<br>Budding. Cell Host and Microbe, 2015, 18, 723-735.                                                          | 11.0 | 868       |
| 14 | A Potent Anti-influenza Compound Blocks Fusion through Stabilization of the Prefusion Conformation of the Hemagglutinin Protein. ACS Infectious Diseases, 2015, 1, 98-109.                                | 3.8  | 22        |
| 15 | Transcriptome Profiling of the Virus-Induced Innate Immune Response in Pteropus vampyrus and Its<br>Attenuation by Nipah Virus Interferon Antagonist Functions. Journal of Virology, 2015, 89, 7550-7566. | 3.4  | 58        |
| 16 | High-Throughput Minigenome System for Identifying Small-Molecule Inhibitors of Ebola Virus<br>Replication. ACS Infectious Diseases, 2015, 1, 380-387.                                                     | 3.8  | 59        |
| 17 | Inhibition of Arenavirus by A3, a Pyrimidine Biosynthesis Inhibitor. Journal of Virology, 2014, 88, 878-889.                                                                                              | 3.4  | 53        |
| 18 | New-generation screening assays for the detection of anti-influenza compounds targeting viral and host functions. Antiviral Research, 2013, 100, 120-132.                                                 | 4.1  | 37        |

Megan L Shaw

| #  | Article                                                                                                                                                                                    | IF   | CITATIONS |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 19 | Successes and challenges in the antiviral field. Current Opinion in Virology, 2013, 3, 483-486.                                                                                            | 5.4  | 2         |
| 20 | Serum- and Glucocorticoid-Regulated Kinase 1 Is Required for Nuclear Export of the<br>Ribonucleoprotein of Influenza A Virus. Journal of Virology, 2013, 87, 6020-6026.                    | 3.4  | 20        |
| 21 | A Sendai Virus-Derived RNA Agonist of RIG-I as a Virus Vaccine Adjuvant. Journal of Virology, 2013, 87,<br>1290-1300.                                                                      | 3.4  | 107       |
| 22 | A Novel Small Molecule Inhibitor of Influenza A Viruses that Targets Polymerase Function and<br>Indirectly Induces Interferon. PLoS Pathogens, 2012, 8, e1002668.                          | 4.7  | 42        |
| 23 | Identification of Small Molecules with Type I Interferon Inducing Properties by High-Throughput<br>Screening. PLoS ONE, 2012, 7, e49049.                                                   | 2.5  | 27        |
| 24 | The host interactome of influenza virus presents new potential targets for antiviral drugs. Reviews in Medical Virology, 2011, 21, 358-369.                                                | 8.3  | 48        |
| 25 | Uncovering the global host cell requirements for influenza virus replication via RNAi screening.<br>Microbes and Infection, 2011, 13, 516-525.                                             | 1.9  | 84        |
| 26 | Broad-spectrum antiviral that interferes with de novo pyrimidine biosynthesis. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 5777-5782.      | 7.1  | 213       |
| 27 | Human host factors required for influenza virus replication. Nature, 2010, 463, 813-817.                                                                                                   | 27.8 | 755       |
| 28 | Novel Nipah Virus Immune-Antagonism Strategy Revealed by Experimental and Computational Study.<br>Journal of Virology, 2010, 84, 10965-10973.                                              | 3.4  | 20        |
| 29 | Henipaviruses Employ a Multifaceted Approach to Evade the Antiviral Interferon Response. Viruses, 2009, 1, 1190-1203.                                                                      | 3.3  | 24        |
| 30 | Nipah Virus Edits Its P Gene at High Frequency To Express the V and W Proteins. Journal of Virology, 2009, 83, 3982-3987.                                                                  | 3.4  | 72        |
| 31 | Nipah Virus Sequesters Inactive STAT1 in the Nucleus via a P Gene-Encoded Mechanism. Journal of<br>Virology, 2009, 83, 7828-7841.                                                          | 3.4  | 96        |
| 32 | Modulation of influenza virus replication by alteration of sodium ion transport and protein kinase C<br>activity. Antiviral Research, 2008, 80, 124-134.                                   | 4.1  | 81        |
| 33 | Cellular Proteins in Influenza Virus Particles. PLoS Pathogens, 2008, 4, e1000085.                                                                                                         | 4.7  | 268       |
| 34 | Ebola Virus VP24 Binds Karyopherin α1 and Blocks STAT1 Nuclear Accumulation. Journal of Virology, 2006, 80, 5156-5167.                                                                     | 3.4  | 412       |
| 35 | Nuclear Localization of the Nipah Virus W Protein Allows for Inhibition of both Virus- and Toll-Like<br>Receptor 3-Triggered Signaling Pathways. Journal of Virology, 2005, 79, 6078-6088. | 3.4  | 174       |
|    |                                                                                                                                                                                            |      |           |

Viruses and the Innate Immune System. , 2005, , 1-18.

MEGAN L SHAW

| #  | Article                                                                                                                                                                                             | IF  | CITATIONS |
|----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 37 | Nipah Virus V and W Proteins Have a Common STAT1-Binding Domain yet Inhibit STAT1 Activation from the Cytoplasmic and Nuclear Compartments, Respectively. Journal of Virology, 2004, 78, 5633-5641. | 3.4 | 206       |
| 38 | Characterisation of the differences between hepatitis C virus genotype 3 and 1 glycoproteins. Journal of Medical Virology, 2003, 70, 361-372.                                                       | 5.0 | 24        |
| 39 | Newcastle Disease Virus (NDV)-Based Assay Demonstrates Interferon-Antagonist Activity for the NDV V<br>Protein and the Nipah Virus V, W, and C Proteins. Journal of Virology, 2003, 77, 1501-1511.  | 3.4 | 348       |
| 40 | Functional Landscape of SARS-CoV-2 Cellular Restriction. SSRN Electronic Journal, 0, , .                                                                                                            | 0.4 | 4         |