Megan L Shaw

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3001859/publications.pdf

Version: 2024-02-01

40 papers

5,819 citations

236925 25 h-index 315739 38 g-index

42 all docs 42 docs citations

42 times ranked 9710 citing authors

#	Article	IF	Citations
1	Influenza. Nature Reviews Disease Primers, 2018, 4, 3.	30.5	880
2	Meta- and Orthogonal Integration of Influenza "OMICs―Data Defines a Role for UBR4 in Virus Budding. Cell Host and Microbe, 2015, 18, 723-735.	11.0	868
3	Human host factors required for influenza virus replication. Nature, 2010, 463, 813-817.	27.8	755
4	Ebola Virus VP24 Binds Karyopherin $\hat{l}\pm 1$ and Blocks STAT1 Nuclear Accumulation. Journal of Virology, 2006, 80, 5156-5167.	3.4	412
5	Transcription Elongation Can Affect Genome 3D Structure. Cell, 2018, 174, 1522-1536.e22.	28.9	369
6	Newcastle Disease Virus (NDV)-Based Assay Demonstrates Interferon-Antagonist Activity for the NDV V Protein and the Nipah Virus V, W, and C Proteins. Journal of Virology, 2003, 77, 1501-1511.	3.4	348
7	Cellular Proteins in Influenza Virus Particles. PLoS Pathogens, 2008, 4, e1000085.	4.7	268
8	Broad-spectrum antiviral that interferes with de novo pyrimidine biosynthesis. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 5777-5782.	7.1	213
9	Nipah Virus V and W Proteins Have a Common STAT1-Binding Domain yet Inhibit STAT1 Activation from the Cytoplasmic and Nuclear Compartments, Respectively. Journal of Virology, 2004, 78, 5633-5641.	3.4	206
10	Nuclear Localization of the Nipah Virus W Protein Allows for Inhibition of both Virus- and Toll-Like Receptor 3-Triggered Signaling Pathways. Journal of Virology, 2005, 79, 6078-6088.	3.4	174
11	Functional landscape of SARS-CoV-2 cellular restriction. Molecular Cell, 2021, 81, 2656-2668.e8.	9.7	137
12	Baloxavir marboxil: the new influenza drug on the market. Current Opinion in Virology, 2019, 35, 14-18.	5.4	111
13	A Sendai Virus-Derived RNA Agonist of RIG-I as a Virus Vaccine Adjuvant. Journal of Virology, 2013, 87, 1290-1300.	3.4	107
14	Nipah Virus Sequesters Inactive STAT1 in the Nucleus via a P Gene-Encoded Mechanism. Journal of Virology, 2009, 83, 7828-7841.	3.4	96
15	Uncovering the global host cell requirements for influenza virus replication via RNAi screening. Microbes and Infection, 2011, 13, 516-525.	1.9	84
16	Modulation of influenza virus replication by alteration of sodium ion transport and protein kinase C activity. Antiviral Research, 2008, 80, 124-134.	4.1	81
17	Nipah Virus Edits Its P Gene at High Frequency To Express the V and W Proteins. Journal of Virology, 2009, 83, 3982-3987.	3.4	72
18	Paramyxovirus V Proteins Interact with the RIG-I/TRIM25 Regulatory Complex and Inhibit RIG-I Signaling. Journal of Virology, 2018, 92, .	3.4	60

#	Article	IF	CITATIONS
19	High-Throughput Minigenome System for Identifying Small-Molecule Inhibitors of Ebola Virus Replication. ACS Infectious Diseases, 2015, 1, 380-387.	3.8	59
20	Transcriptome Profiling of the Virus-Induced Innate Immune Response in Pteropus vampyrus and Its Attenuation by Nipah Virus Interferon Antagonist Functions. Journal of Virology, 2015, 89, 7550-7566.	3.4	58
21	Inhibition of Arenavirus by A3, a Pyrimidine Biosynthesis Inhibitor. Journal of Virology, 2014, 88, 878-889.	3.4	53
22	The host interactome of influenza virus presents new potential targets for antiviral drugs. Reviews in Medical Virology, 2011, 21, 358-369.	8.3	48
23	A Novel Small Molecule Inhibitor of Influenza A Viruses that Targets Polymerase Function and Indirectly Induces Interferon. PLoS Pathogens, 2012, 8, e1002668.	4.7	42
24	New-generation screening assays for the detection of anti-influenza compounds targeting viral and host functions. Antiviral Research, 2013, 100, 120-132.	4.1	37
25	The Next Wave of Influenza Drugs. ACS Infectious Diseases, 2017, 3, 691-694.	3.8	32
26	Identification of Small Molecules with Type I Interferon Inducing Properties by High-Throughput Screening. PLoS ONE, 2012, 7, e49049.	2.5	27
27	Characterisation of the differences between hepatitis C virus genotype 3 and 1 glycoproteins. Journal of Medical Virology, 2003, 70, 361-372.	5.0	24
28	Henipaviruses Employ a Multifaceted Approach to Evade the Antiviral Interferon Response. Viruses, 2009, 1, 1190-1203.	3.3	24
29	A Potent Anti-influenza Compound Blocks Fusion through Stabilization of the Prefusion Conformation of the Hemagglutinin Protein. ACS Infectious Diseases, 2015, 1, 98-109.	3.8	22
30	Role of Host Genes in Influenza Virus Replication. Current Topics in Microbiology and Immunology, 2017, 419, 151-189.	1.1	22
31	Novel Nipah Virus Immune-Antagonism Strategy Revealed by Experimental and Computational Study. Journal of Virology, 2010, 84, 10965-10973.	3.4	20
32	Serum- and Glucocorticoid-Regulated Kinase 1 Is Required for Nuclear Export of the Ribonucleoprotein of Influenza A Virus. Journal of Virology, 2013, 87, 6020-6026.	3.4	20
33	Broad Spectrum Inhibitor of Influenza A and B Viruses Targeting the Viral Nucleoprotein. ACS Infectious Diseases, 2018, 4, 146-157.	3.8	19
34	An Influenza Virus Entry Inhibitor Targets Class II PI3 Kinase and Synergizes with Oseltamivir. ACS Infectious Diseases, 2019, 5, 1779-1793.	3.8	17
35	SMARCA2-regulated host cell factors are required for MxA restriction of influenza A viruses. Scientific Reports, 2018, 8, 2092.	3.3	12
36	Enisamium Reduces Influenza Virus Shedding and Improves Patient Recovery by Inhibiting Viral RNA Polymerase Activity. Antimicrobial Agents and Chemotherapy, 2021, 65, .	3.2	10

#	Article	lF	CITATIONS
37	Nucleolar Relocalization of RBM14 by Influenza A Virus NS1 Protein. MSphere, 2018, 3, .	2.9	8
38	Functional Landscape of SARS-CoV-2 Cellular Restriction. SSRN Electronic Journal, 0, , .	0.4	4
39	Successes and challenges in the antiviral field. Current Opinion in Virology, 2013, 3, 483-486.	5.4	2
40	Viruses and the Innate Immune System. , 2005, , 1-18.		0