Alessio Mengoni

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3001251/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	CONTIGuator: a bacterial genomes finishing tool for structural insights on draft genomes. Source Code for Biology and Medicine, 2011, 6, 11.	1.7	266
2	ENDOPHYTIC BACTERIA FROM SEEDS OF <i>NICOTIANA TABACUM</i> CAN REDUCE CADMIUM PHYTOTOXICITY. International Journal of Phytoremediation, 2009, 11, 251-267.	3.1	240
3	Isolation and Characterization of Endophytic Bacteria from the Nickel Hyperaccumulator Plant Alyssum bertolonii. Microbial Ecology, 2007, 53, 306-316.	2.8	182
4	The diversity and evolution of cell cycle regulation in alpha-proteobacteria: a comparative genomic analysis. BMC Systems Biology, 2010, 4, 52.	3.0	175
5	Taxonomy of Rhizobiaceae revisited: proposal of a new framework for genus delimitation. International Journal of Systematic and Evolutionary Microbiology, 2022, 72, .	1.7	125
6	Characterization of nickel-resistant bacteria isolated from serpentine soil. Environmental Microbiology, 2001, 3, 691-698.	3.8	123
7	Genetic Diversity and Dynamics of Sinorhizobium meliloti Populations Nodulating Different Alfalfa Cultivars in Italian Soils. Applied and Environmental Microbiology, 2000, 66, 4785-4789.	3.1	116
8	Use of RAPD and microsatellite (SSR) variation to assess genetic relationships among populations of tetraploid alfalfa, Medicago sativa. Plant Breeding, 2000, 119, 311-317.	1.9	114
9	Cell Cycle Control by the Master Regulator CtrA in Sinorhizobium meliloti. PLoS Genetics, 2015, 11, e1005232.	3.5	105
10	Fluctuation of bacteria isolated from elm tissues during different seasons and from different plant organs. Research in Microbiology, 2003, 154, 105-114.	2.1	103
11	Genetic diversity and heavy metal tolerance in populations of Silene paradoxa L. (Caryophyllaceae): a random amplified polymorphic DNA analysis. Molecular Ecology, 2000, 9, 1319-1324.	3.9	101
12	Exploring the symbiotic pangenome of the nitrogen-fixing bacterium Sinorhizobium meliloti. BMC Genomics, 2011, 12, 235.	2.8	97
13	Replicon-Dependent Bacterial Genome Evolution: The Case of Sinorhizobium meliloti. Genome Biology and Evolution, 2013, 5, 542-558.	2.5	94
14	Preliminary Comparison of Oral and Intestinal Human Microbiota in Patients with Colorectal Cancer: A Pilot Study. Frontiers in Microbiology, 2017, 8, 2699.	3.5	93
15	Soil Bacterial Community Response to Differences in Agricultural Management along with Seasonal Changes in a Mediterranean Region. PLoS ONE, 2014, 9, e105515.	2.5	89
16	Exploring the evolutionary dynamics of plasmids: the Acinetobacter pan-plasmidome. BMC Evolutionary Biology, 2010, 10, 59.	3.2	87
17	Metabolic modelling reveals the specialization of secondary replicons for niche adaptation in Sinorhizobium meliloti. Nature Communications, 2016, 7, 12219.	12.8	85
18	Plant-Bacteria Association and Symbiosis: Are There Common Genomic Traits in Alphaproteobacteria?. Genes, 2011, 2, 1017-1032.	2.4	78

#	Article	IF	CITATIONS
19	Multidisciplinary approaches for studying rhizobium–legume symbioses. Canadian Journal of Microbiology, 2019, 65, 1-33.	1.7	77
20	Genetic diversity of heavy metal-tolerant populations inSilene paradoxaL. (Caryophyllaceae): a chloroplast microsatellite analysis. Molecular Ecology, 2001, 10, 1909-1916.	3.9	76
21	Plant-endophytes interaction influences the secondary metabolism in Echinacea purpurea (L.) Moench: an in vitro model. Scientific Reports, 2017, 7, 16924.	3.3	74
22	DuctApe: A suite for the analysis and correlation of genomic and OmniLogâ,,¢ Phenotype Microarray data. Genomics, 2014, 103, 1-10.	2.9	73
23	Advances in Host Plant and Rhizobium Genomics to Enhance Symbiotic Nitrogen Fixation inÂGrain Legumes. Advances in Agronomy, 2015, , 1-116.	5.2	73
24	Plants as extreme environments? Ni-resistant bacteria and Ni-hyperaccumulators of serpentine flora. Plant and Soil, 2010, 331, 5-16.	3.7	72
25	Harnessing Rhizobia to Improve Heavy-Metal Phytoremediation by Legumes. Genes, 2018, 9, 542.	2.4	72
26	Genetic relationship ofSinorhizobium melilotiandSinorhizobium medicaestrains isolated from Caucasian region. FEMS Microbiology Letters, 2003, 220, 207-213.	1.8	71
27	Effect of on-field inoculation of Phaseolus vulgaris with rhizobia on soil bacterial communities. FEMS Microbiology Ecology, 2011, 77, 211-222.	2.7	69
28	A First Insight into the Gut Microbiota of the Sea Turtle Caretta caretta. Frontiers in Microbiology, 2016, 7, 1060.	3.5	69
29	The <scp>DivJ</scp> , <scp>CbrA</scp> and <scp>PleC</scp> system controls <scp>DivK</scp> phosphorylation and symbiosis in <i><scp>S</scp>inorhizobium meliloti</i> . Molecular Microbiology, 2013, 90, 54-71.	2.5	68
30	Evolutionary dynamics of nickel hyperaccumulation in Alyssum revealed by its nrDNA analysis. New Phytologist, 2003, 159, 691-699.	7.3	67
31	Trade, Diplomacy, and Warfare: The Quest for Elite Rhizobia Inoculant Strains. Frontiers in Microbiology, 2017, 8, 2207.	3.5	67
32	Bioactive volatile organic compounds from Antarctic (sponges) bacteria. New Biotechnology, 2013, 30, 824-838.	4.4	62
33	Evaluation of the Performances of Ribosomal Database Project (RDP) Classifier for Taxonomic Assignment of 16S rRNA Metabarcoding Sequences Generated from Illumina-Solexa NGS. Journal of Genomics, 2015, 3, 36-39.	0.9	59
34	Changes in Cystic Fibrosis Airway Microbial Community Associated with a Severe Decline in Lung Function. PLoS ONE, 2015, 10, e0124348.	2.5	59
35	Analysis of plasmid genes by phylogenetic profiling and visualization of homology relationships using Blast2Network. BMC Bioinformatics, 2008, 9, 551.	2.6	57
36	Metabolic Capacity of <i>Sinorhizobium</i> (<i>Ensifer</i>) <i>meliloti</i> Strains as Determined by Phenotype MicroArray Analysis. Applied and Environmental Microbiology, 2009, 75, 5396-5404.	3.1	57

#	Article	IF	CITATIONS
37	Genome-scale metabolic reconstruction of the symbiosis between a leguminous plant and a nitrogen-fixing bacterium. Nature Communications, 2020, 11, 2574.	12.8	56
38	Appraisal of the crop-rotation effect of rhizobial inoculation on potato cropping systems in relation to soil bacterial communities. Soil Biology and Biochemistry, 2012, 54, 1-6.	8.8	54
39	Mixed Nodule Infection in Sinorhizobium meliloti–Medicago sativa Symbiosis Suggest the Presence of Cheating Behavior. Frontiers in Plant Science, 2016, 7, 835.	3.6	54
40	Whole-genome epidemiology, characterisation, and phylogenetic reconstruction of Staphylococcus aureus strains in a paediatric hospital. Genome Medicine, 2018, 10, 82.	8.2	54
41	Relationship between heavy metals pollution and genetic diversity in Mediterranean populations of the sandhopper Talitrus saltator (Montagu) (Crustacea, Amphipoda). Environmental Pollution, 2010, 158, 1638-1643.	7.5	52
42	Exploring the plant-associated bacterial communities in Medicago sativa L. BMC Microbiology, 2012, 12, 78.	3.3	50
43	Antibiotic resistance differentiates Echinacea purpurea endophytic bacterial communities with respect to plant organs. Research in Microbiology, 2014, 165, 686-694.	2.1	50
44	Evolution of Intra-specific Regulatory Networks in a Multipartite Bacterial Genome. PLoS Computational Biology, 2015, 11, e1004478.	3.2	50
45	Comparison of Highly and Weakly Virulent Dickeya solani Strains, With a View on the Pangenome and Panregulon of This Species. Frontiers in Microbiology, 2018, 9, 1940.	3.5	50
46	Robustness encoded across essential and accessory replicons of the ecologically versatile bacterium Sinorhizobium meliloti. PLoS Genetics, 2018, 14, e1007357.	3.5	49
47	Genetic diversity inferred from AFLP fingerprinting in populations ofOnosma echioides(Boraginaceae) from serpentine and calcareous soils. Plant Biosystems, 2006, 140, 211-219.	1.6	47
48	Methylene blue-containing liposomes as new photodynamic anti-bacterial agents. Journal of Materials Chemistry B, 2017, 5, 2788-2797.	5.8	47
49	Deciphering the Ecology of Cystic Fibrosis Bacterial Communities: Towards Systems-Level Integration. Trends in Molecular Medicine, 2019, 25, 1110-1122.	6.7	47
50	Genetic Diversity of Bacterial Communities of Serpentine Soil and of Rhizosphere of the Nickel-Hyperaccumulator Plant Alyssum bertolonii. Microbial Ecology, 2004, 48, 209-217.	2.8	46
51	Endophytic and rhizospheric bacterial communities isolated from the medicinal plants Echinacea purpurea and Echinacea angustifolia. International Microbiology, 2014, 17, 165-74.	2.4	46
52	Plant-by-Plant Variations of Bacterial Communities Associated with Leaves of the Nickel Hyperaccumulator Alyssum bertolonii Desv Microbial Ecology, 2009, 58, 660-667.	2.8	45
53	The capability to synthesize phytochelatins and the presence of constitutive and functional phytochelatin synthases are ancestral (plesiomorphic) characters for basal land plants. Journal of Experimental Botany, 2014, 65, 1153-1163.	4.8	45
54	Large-scale genetic variation of the symbiosis-required megaplasmid pSymA revealed by comparative genomic analysis of Sinorhizobium meliloti natural strains. BMC Genomics, 2005, 6, 158.	2.8	44

#	Article	IF	CITATIONS
55	StreamingTrim 1.0: a Java software for dynamic trimming of 16S <scp>rRNA</scp> sequence data from metagenetic studies. Molecular Ecology Resources, 2014, 14, 426-434.	4.8	44
56	Comparison of 16S rRNA and 16S rDNA T-RFLP Approaches to Study Bacterial Communities in Soil Microcosms Treated with Chromate as Perturbing Agent. Microbial Ecology, 2005, 50, 375-384.	2.8	43
57	Antagonistic interactions between endophytic cultivable bacterial communities isolated from the medicinal plant <scp><i>E</i></scp> <i>chinacea purpurea</i> . Environmental Microbiology, 2016, 18, 2357-2365.	3.8	43
58	Chloroplast genetic diversity and biogeography in the serpentine endemic Niâ€hyperaccumulator Alyssum bertolonii. New Phytologist, 2003, 157, 349-356.	7.3	42
59	Evolution of copper-tolerance and increased expression of a 2b-type metallothionein gene in Silene paradoxa L. populations. Plant and Soil, 2003, 257, 451-457.	3.7	41
60	Intra-specific differences in nickel tolerance and accumulation in the Ni-hyperaccumulator Alyssum bertolonii. Environmental and Experimental Botany, 2007, 60, 377-384.	4.2	41
61	Rhizosphere effect and salinity competing to shape microbial communities in <i>Phragmites australis</i> (Cav.) Trin. ex-Steud. FEMS Microbiology Letters, 2014, 359, 193-200.	1.8	41
62	Enrichment and identification of bacteria capable of reducing chemical oxygen demand of anaerobically treated molasses spent wash. Journal of Applied Microbiology, 2004, 96, 1278-1286.	3.1	39
63	Effects of soil management on structure and activity of denitrifying bacterial communities. Applied Soil Ecology, 2011, 49, 46-58.	4.3	39
64	Phenotypic and genomic characterization of the antimicrobial producer Rheinheimera sp. EpRS3 isolated from the medicinal plant Echinacea purpurea: insights into its biotechnological relevance. Research in Microbiology, 2017, 168, 293-305.	2.1	39
65	A Different Microbiome Gene Repertoire in the Airways of Cystic Fibrosis Patients with Severe Lung Disease. International Journal of Molecular Sciences, 2017, 18, 1654.	4.1	39
66	Medicinal Plants and Their Bacterial Microbiota: A Review on Antimicrobial Compounds Production for Plant and Human Health. Pathogens, 2021, 10, 106.	2.8	38
67	Significant and Conflicting Correlation of IL-9 With Prevotella and Bacteroides in Human Colorectal Cancer. Frontiers in Immunology, 2020, 11, 573158.	4.8	37
68	Perspectives and Challenges in Microbial Communities Metabolic Modeling. Frontiers in Genetics, 2017, 8, 88.	2.3	36
69	Tissue specificity and differential effects on in vitro plant growth of single bacterial endophytes isolated from the roots, leaves and rhizospheric soil of Echinacea purpurea. BMC Plant Biology, 2019, 19, 284.	3.6	36
70	Genetic Variability in European Populations of an Invasive American Crayfish: Preliminary Results. Biological Invasions, 2003, 5, 269-274.	2.4	35
71	Preliminary data on antibacterial activity of Echinacea purpurea -associated bacterial communities against Burkholderia cepacia complex strains, opportunistic pathogens of Cystic Fibrosis patients. Microbiological Research, 2017, 196, 34-43.	5.3	35
72	Is the plant-associated microbiota of Thymus spp. adapted to plant essential oil?. Research in Microbiology, 2017, 168, 276-282.	2.1	35

#	Article	IF	CITATIONS
73	Plasmid electroporation of Sinorhizobium strains: The role of the restriction gene hsdR in type strain Rm1021. Plasmid, 2010, 63, 128-135.	1.4	34
74	Chromids Aid Genome Expansion and Functional Diversification in the Family <i>Burkholderiaceae</i> . Molecular Biology and Evolution, 2019, 36, 562-574.	8.9	34
75	Development of real-time PCR assay for detection and quantification of <i>Sinorhizobium meliloti </i> in soil and plant tissue. Letters in Applied Microbiology, 2009, 48, 355-361.	2.2	32
76	AFLP fingerprinting of Anchusa (Boraginaceae) in the Corso-Sardinian system: Genetic diversity, population differentiation and conservation priorities in an insular endemic group threatened with extinction. Biological Conservation, 2008, 141, 2000-2011.	4.1	30
77	Symbiotic and Nonsymbiotic Members of the Genus <i>Ensifer</i> (syn. <i>Sinorhizobium</i>) Are Separated into Two Clades Based on Comparative Genomics and High-Throughput Phenotyping. Genome Biology and Evolution, 2020, 12, 2521-2534.	2.5	30
78	Role and Regulation of ACC Deaminase Gene in Sinorhizobium meliloti: Is It a Symbiotic, Rhizospheric or Endophytic Gene?. Frontiers in Genetics, 2017, 8, 6.	2.3	29
79	Pyrosequencing Unveils Cystic Fibrosis Lung Microbiome Differences Associated with a Severe Lung Function Decline. PLoS ONE, 2016, 11, e0156807.	2.5	29
80	High genomic variability in the plant pathogenic bacterium Pectobacterium parmentieri deciphered from de novo assembled complete genomes. BMC Genomics, 2018, 19, 751.	2.8	28
81	Intra-specific differences in mineral element composition in the Ni-hyperaccumulator Alyssum bertolonii: A survey of populations in nature. Environmental and Experimental Botany, 2007, 60, 50-56.	4.2	27
82	Exploring the Anti- <i>Burkholderia cepacia</i> Complex Activity of Essential Oils: A Preliminary Analysis. Evidence-based Complementary and Alternative Medicine, 2014, 2014, 1-10.	1.2	27
83	Low genetic diversity and contrasting patterns of differentiation in the two monotypic genera Halacsya and Paramoltkia (Boraginaceae) endemic to the Balkan serpentines. Flora: Morphology, Distribution, Functional Ecology of Plants, 2014, 209, 5-14.	1.2	27
84	Nonadditive Transcriptomic Signatures of Genotype-by-Genotype Interactions during the Initiation of Plant-Rhizobium Symbiosis. MSystems, 2021, 6, .	3.8	26
85	Genomic and Biotechnological Characterization of the Heavy-Metal Resistant, Arsenic-Oxidizing Bacterium Ensifer sp. M14. Genes, 2018, 9, 379.	2.4	25
86	Creation and Characterization of a Genomically Hybrid Strain in the Nitrogen-Fixing Symbiotic Bacterium <i>Sinorhizobium meliloti</i> . ACS Synthetic Biology, 2018, 7, 2365-2378.	3.8	24
87	The influence of Echinacea purpurea leaf microbiota on chicoric acid level. Scientific Reports, 2019, 9, 10897.	3.3	24
88	A Meta-Analysis Approach to Defining the Culturable Core of Plant Endophytic Bacterial Communities. Applied and Environmental Microbiology, 2022, 88, aem0253721.	3.1	24
89	Linking Bacterial Endophytic Communities to Essential Oils: Clues from <i>Lavandula angustifolia</i> Mill. Evidence-based Complementary and Alternative Medicine, 2014, 2014, 1-16.	1.2	23
90	Untargeted Metagenomic Investigation of the Airway Microbiome of Cystic Fibrosis Patients with Moderate-Severe Lung Disease. Microorganisms, 2020, 8, 1003.	3.6	23

#	Article	IF	CITATIONS
91	Fluctuation of endophytic bacteria and phytoplasmosis in elm trees. Microbiological Research, 2003, 158, 363-369.	5.3	22
92	Draft Genome Sequence of a Highly Virulent Strain of the Plant Pathogen Dickeya solani, IFB0099. Genome Announcements, 2015, 3, .	0.8	22
93	Exploiting Nitrogen-Fixing Rhizobial Symbionts Genetic Resources for Improving Phytoremediation of Contaminated Soils. , 2017, , 275-288.		22
94	Cloning Method for Taxonomic Interpretation of T-RFLP Patterns. BioTechniques, 2002, 33, 990-992.	1.8	21
95	Diversity of <i>Sinorhizobium</i> strains nodulating <i>Medicago sativa</i> from different Iranian regions. FEMS Microbiology Letters, 2008, 288, 40-46.	1.8	21
96	VDR Taql polymorphism is associated with chronic periodontitis in Italian population. Archives of Oral Biology, 2011, 56, 1494-1498.	1.8	20
97	Promoting Model Systems of Microbiota–Medicinal Plant Interactions. Trends in Plant Science, 2020, 25, 223-225.	8.8	20
98	Exploring the potential of highly charged Ru(II)- and heteronuclear Ru(II)/Cu(II)-polypyridyl complexes as antimicrobial agents. Journal of Inorganic Biochemistry, 2021, 220, 111467.	3.5	20
99	Nitroimidazole-Based Ruthenium(II) Complexes: Playing with Structural Parameters to Design Photostable and Light-Responsive Antibacterial Agents. Inorganic Chemistry, 2022, 61, 6689-6694.	4.0	20
100	Construction of a new vector conferring methotrexate resistance in Nicotiana tabacum plants. Plant Molecular Biology, 1998, 37, 1079-1084.	3.9	19
101	Genetic diversity and salt tolerance of Sinorhizobium populations from two Tunisian soils. Annals of Microbiology, 2010, 60, 541-547.	2.6	19
102	Furnishing spaceship environment: evaluation of bacterial biofilms on different materials used inside International Space Station. Research in Microbiology, 2018, 169, 289-295.	2.1	19
103	Antagonism and antibiotic resistance drive a species-specific plant microbiota differentiation in Echinacea spp. FEMS Microbiology Ecology, 2018, 94, .	2.7	19
104	The Cultivable Bacterial Microbiota Associated to the Medicinal Plant Origanum vulgare L.: From Antibiotic Resistance to Growth-Inhibitory Properties. Frontiers in Microbiology, 2020, 11, 862.	3.5	19
105	Mapping Contigs Using CONTIGuator. Methods in Molecular Biology, 2015, 1231, 163-176.	0.9	19
106	Phylogenetic relationships among Mediterranean sandhoppers. Journal of Natural History, 2004, 38, 499-508.	0.5	18
107	Genetic diversity of dinitrogen-fixing bacterial communities in soil amended with olive husks. Annals of Microbiology, 2006, 56, 83-88.	2.6	17
108	Antimicrobial activity of Pseudoalteromonas strains isolated from the Ross Sea (Antarctica) versus Cystic Fibrosis opportunistic pathogens. Hydrobiologia, 2015, 761, 443-457.	2.0	17

#	Article	IF	CITATIONS
109	Chloroplast microsatellite variations in tetraploid alfalfa. Plant Breeding, 2000, 119, 509-512.	1.9	16
110	Comparative genomics and pangenome-oriented studies reveal high homogeneity of the agronomically relevant enterobacterial plant pathogen Dickeya solani. BMC Genomics, 2020, 21, 449.	2.8	16
111	Distribution patterns of polychlorinated dibenzo-p-dioxins and polychlorinated dibenzofurans in sediments of the Xiangjiang River, China. Environmental Monitoring and Assessment, 2012, 184, 7083-7092.	2.7	15
112	Composition of supralittoral sediments bacterial communities in a Mediterranean island. Annals of Microbiology, 2015, 65, 1-13.	2.6	15
113	Spatial structuring of bacterial communities in epilithic biofilms in the Acquarossa river (Italy). FEMS Microbiology Ecology, 2018, 94, .	2.7	15
114	Tn-Core: A Toolbox for Integrating Tn-seq Gene Essentiality Data and Constraint-Based Metabolic Modeling. ACS Synthetic Biology, 2019, 8, 158-169.	3.8	15
115	Genetic diversity and salt tolerance of bacterial communities from two Tunisian soils. Annals of Microbiology, 2009, 59, 25-32.	2.6	14
116	Effect of the plant flavonoid luteolin on Ensifer meliloti 3001 phenotypic responses. Plant and Soil, 2016, 399, 159-178.	3.7	14
117	Applying predictive models to decipher rhizobacterial modifications in common reed die-back affected populations. Science of the Total Environment, 2018, 642, 708-722.	8.0	14
118	Volatile profile of <i>Echinacea purpurea</i> plants after <i>in vitro</i> endophyte infection. Natural Product Research, 2020, 34, 2232-2237.	1.8	14
119	Contrasting patterns of genetic divergence in two sympatric pseudo-metallophytes: Rumex acetosa L. and Commelina communis L BMC Evolutionary Biology, 2012, 12, 84.	3.2	13
120	Exploring the bacterial gut microbiota of supralittoral talitrid amphipods. Research in Microbiology, 2017, 168, 74-84.	2.1	13
121	High genetic diversity and variability of bacterial communities associated with the sandhopper Talitrus saltator (Montagu) (Crustacea, Amphipoda). Estuarine, Coastal and Shelf Science, 2013, 131, 75-82.	2.1	12
122	Molecular phylogeny of the nickel-resistance gene nreB and functional role in the nickel sensitive symbiotic nitrogen fixing bacterium Sinorhizobium meliloti. Plant and Soil, 2014, 377, 189-201.	3.7	12
123	Biogeography of Sinorhizobium meliloti nodulating alfalfa in different Croatian regions. Research in Microbiology, 2014, 165, 508-516.	2.1	12
124	Draft genome sequence and overview of the purple non sulfur bacterium Rhodopseudomonas palustris 42OL. Standards in Genomic Sciences, 2016, 11, 24.	1.5	12
125	Sequencing and analysis of plasmids pAV1 and pAV2 ofAcinetobacter venetianus VE-C3 involved in diesel fuel degradation. Annals of Microbiology, 2007, 57, 521-526.	2.6	10
126	Comparative genomics of VirR regulons in Clostridium perfringens strains. BMC Microbiology, 2010, 10, 65.	3.3	10

#	Article	IF	CITATIONS
127	Bacterial community and proteome analysis of fresh-cut lettuce as affected by packaging. FEMS Microbiology Letters, 2016, 363, fnv209.	1.8	10
128	Metabolic Modeling of Pectobacterium parmentieri SCC3193 Provides Insights into Metabolic Pathways of Plant Pathogenic Bacteria. Microorganisms, 2019, 7, 101.	3.6	10
129	Metal-Resistance in Bacteria: Why Care?. Genes, 2020, 11, 1470.	2.4	10
130	Genomes analysis and bacteria identification: The use of overlapping genes as molecular markers. Journal of Microbiological Methods, 2015, 117, 108-112.	1.6	9
131	Antimicrobial activity of six essential oils againstBurkholderia cepaciacomplex: insights into mechanism(s) of action. Future Microbiology, 2018, 13, 59-67.	2.0	9
132	To the Land and Beyond: Crab Microbiomes as a Paradigm for the Evolution of Terrestrialization. Frontiers in Microbiology, 2020, 11, 575372.	3.5	9
133	Synthetic plant microbiota challenges in nonmodel species. Trends in Microbiology, 2022, 30, 922-924.	7.7	9
134	ITS-polymorphism of salt-tolerant and salt-sensitive native isolates of Sinorhizoblum meliloti-symbionts of alfalfa, clover and fenugreek plants. Russian Journal of Genetics, 2014, 50, 348-359.	0.6	8
135	Exploring the dynamics of bacterial community composition in soil: the pan-bacteriome approach. Antonie Van Leeuwenhoek, 2015, 107, 785-797.	1.7	8
136	Essential Oil from <i>Origanum vulgare</i> Completely Inhibits the Growth of Multidrug-Resistant Cystic Fibrosis Pathogens. Natural Product Communications, 2016, 11, 1934578X1601100.	0.5	8
137	Microbial community composition of water samples stored inside the International Space Station. Research in Microbiology, 2019, 170, 230-234.	2.1	8
138	Endophytes from African Rice (Oryza glaberrima L.) Efficiently Colonize Asian Rice (Oryza sativa L.) Stimulating the Activity of Its Antioxidant Enzymes and Increasing the Content of Nitrogen, Carbon, and Chlorophyll. Microorganisms, 2021, 9, 1714.	3.6	8
139	Improvement of the cDNA-AFLP method using fluorescent primers for transcription analysis in bacteria. Journal of Microbiological Methods, 2005, 63, 211-215.	1.6	7
140	Putative midkine family protein up-regulation in (Mollusca, Gastropoda) exposed to sublethal concentrations of cadmium. Aquatic Toxicology, 2005, 75, 374-379.	4.0	7
141	Permanent draft genome sequences of the symbiotic nitrogen fixing Ensifer meliloti strains BO21CC and AK58. Standards in Genomic Sciences, 2013, 9, 352-333.	1.5	7
142	Competitiveness for Nodule Colonization in Sinorhizobium meliloti: Combined <i>In Vitro</i> -Tagged Strain Competition and Genome-Wide Association Analysis. MSystems, 2021, 6, e0055021.	3.8	7
143	The Integrated Microbial Genome Resource of Analysis. Methods in Molecular Biology, 2015, 1231, 289-295.	0.9	7
144	Lung and Gut Microbiota Changes Associated with Pseudomonas aeruginosa Infection in Mouse Models of Cystic Fibrosis. International Journal of Molecular Sciences, 2021, 22, 12169.	4.1	7

#	Article	IF	CITATIONS
145	DNA Methylation in <i>Ensifer</i> Species during Free-Living Growth and during Nitrogen-Fixing Symbiosis with <i>Medicago</i> spp MSystems, 2022, 7, e0109221.	3.8	7
146	Pervasive RNA Regulation of Metabolism Enhances the Root Colonization Ability of Nitrogen-Fixing Symbiotic α-Rhizobia. MBio, 2022, 13, e0357621.	4.1	7
147	Differential Response of Wheat Rhizosphere Bacterial Community to Plant Variety and Fertilization. International Journal of Molecular Sciences, 2022, 23, 3616.	4.1	7
148	Identification of alkane monoxygenase genes inAcinetobacter venetianus VE-C3 and analysis of mutants impaired in diesel fuel degradation. Annals of Microbiology, 2006, 56, 207-214.	2.6	6
149	Diet and gut microbiota of two supralittoral amphipods Orchestia montagui and Talitrus saltator living in different microhabitats. Estuarine, Coastal and Shelf Science, 2017, 197, 119-125.	2.1	6
150	Omics approaches on freshâ€cut lettuce reveal global molecular responses to sodium hypochlorite and peracetic acid treatment. Journal of the Science of Food and Agriculture, 2018, 98, 737-750.	3.5	6
151	Exploring the links between bacterial communities and magnetic susceptibility in bulk soil and rhizosphere of beech (Fagus sylvatica L.). Applied Soil Ecology, 2019, 138, 69-79.	4.3	6
152	Nickel Hyperaccumulating Plants and Alyssum bertolonii: Model Systems for Studying Biogeochemical Interactions in Serpentine Soils. Soil Biology, 2012, , 279-296.	0.8	6
153	IL-18 gene promoter polymorphisms are only moderately associated with periodontal disease in Italian population. Clinical Cases in Mineral and Bone Metabolism, 2012, 9, 153-6.	1.0	6
154	Scent of a Symbiont: The Personalized Genetic Relationships of Rhizobium—Plant Interaction. International Journal of Molecular Sciences, 2022, 23, 3358.	4.1	6
155	Bacterial Pangenomics. Methods in Molecular Biology, 2015, 1231, v-vi.	0.9	5
156	Subfunctionalization influences the expansion of bacterial multidrug antibiotic resistance. BMC Genomics, 2017, 18, 834.	2.8	5
157	Proposed Research for Innovative Solutions for Chickpeas and Beans in a Climate Change Scenario: The Mediterranean Basin. Sustainability, 2020, 12, 1315.	3.2	5
158	Alfalfa for a Sustainable Ovine Farming System: Proposed Research for a New Feeding Strategy Based on Alfalfa and Ecological Leftovers in Drought Conditions. Sustainability, 2021, 13, 3880.	3.2	5
159	Defining the resilience of the human salivary microbiota by a 520-day longitudinal study in a confined environment: the Mars500 mission. Microbiome, 2021, 9, 152.	11.1	5
160	Pattern formation by competition: a biological example. Journal of Biological Physics, 1999, 25, 279-288.	1.5	4
161	Pseudomonas aeruginosaSepsis in Stem Cell Transplantation Patients. Infection Control and Hospital Epidemiology, 2006, 27, 767-770.	1.8	4
162	Development of a cultivationâ€independent approach for the study of genetic diversity of <i>Sinorhizobium meliloti</i> populations. Molecular Ecology Resources, 2010, 10, 170-172.	4.8	4

#	Article	IF	CITATIONS
163	Draft Genome Sequence of <i>Pseudomonas</i> sp. Strain Ep R1 Isolated from <i>Echinacea purpurea</i> Roots and Effective in the Growth Inhibition of Human Opportunistic Pathogens Belonging to the Burkholderia cepacia Complex. Genome Announcements, 2017, 5, .	0.8	4
164	Legume tasters: symbiotic rhizobia host preference and smart inoculant formulations. Biological Communications, 2021, 66, .	0.8	4
165	From Pangenome to Panphenome and Back. Methods in Molecular Biology, 2015, 1231, 257-270.	0.9	4
166	Arthrobacter sp. EpRS66 and Arthrobacter sp. EpRS71: Draft Genome Sequences from Two Bacteria Isolated from Echinacea purpurea Rhizospheric Soil. Frontiers in Microbiology, 2016, 7, 1417.	3.5	3
167	New Genome Sequence of an Echinacea purpurea Endophyte, Arthrobacter sp. Strain EpSL27, Able To Inhibit Human-Opportunistic Pathogens. Genome Announcements, 2017, 5, .	0.8	3
168	Multifunctional nanoassemblies target bacterial lipopolysaccharides for enhanced antimicrobial DNA delivery. Colloids and Surfaces B: Biointerfaces, 2020, 195, 111266.	5.0	3
169	Exploring the pattern of phenotypic and genetic polymorphism in the arsenic hyperaccumulator Pteris vittata L. (Chinese brake fern). Plant and Soil, 2013, 373, 471-483.	3.7	2
170	Exploring the Effect of the Composition of Three Different Oregano Essential Oils on the Growth of Multidrug-Resistant Cystic Fibrosis Pseudomonas aeruginosa Strains. Natural Product Communications, 2017, 12, 1934578X1701201.	0.5	2
171	Template-Assisted Metabolic Reconstruction and Assembly of Hybrid Bacterial Models. Methods in Molecular Biology, 2018, 1716, 177-196.	0.9	2
172	Genomic Diversity and Evolution of Rhizobia. , 2019, , 37-46.		2
173	The metabolic shift in highly and weakly virulent Dickeya solani strains is more affected by temperature than by mutations in genes encoding global virulence regulators. FEMS Microbiology Ecology, 2020, 96, .	2.7	2
174	Genomic and Functional Diversity of the Sinorhizobial Model Group. Soil Biology, 2013, , 69-85.	0.8	2
175	Exploring the resident gut microbiota of stranded odontocetes: high similarities between two dolphin species Tursiops truncatus and Stenella coeruleoalba. Journal of the Marine Biological Association of the United Kingdom, 2020, 100, 1181-1188.	0.8	1
176	Metagenomic Assembly: Reconstructing Genomes from Metagenomes. Methods in Molecular Biology, 2021, 2242, 139-152.	0.9	1
177	Exploiting symbiotic genomes for the enhancement of legume productivity. Journal of Biotechnology, 2012, 161, 10.	3.8	Ο
178	Genomics for the environment: the hidden power of bacteria. Current Opinion in Biotechnology, 2013, 24, S26.	6.6	0
179	Draft Genome Sequence of <i>Pseudomonas</i> sp. EpS/L25, Isolated from the Medicinal Plant <i>Echinacea purpurea</i> and Able To Synthesize Antimicrobial Compounds. Genome Announcements, 2016, 4, .	0.8	0
180	P072 Taxonomic and functional microbial signatures of cystic fibrosis lung disease. Journal of Cystic Fibrosis, 2018, 17, S79.	0.7	0

#	Article	IF	CITATIONS
181	A Method for the Structure-Based, Genome-Wide Analysis of Bacterial Intergenic Sequences Identifies Shared Compositional and Functional Features. Genes, 2019, 10, 834.	2.4	0
182	Analysis of Microbial Population Genetics. , 2008, , 551-565.		0
183	Microbial Genetics and Evolution. Microorganisms, 2022, 10, 1274.	3.6	0