
Steven W Levison

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3000727/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Oligodendrocyte progenitor proliferation is disinhibited following traumatic brain injury in leukemia inhibitory factor heterozygous mice. Journal of Neuroscience Research, 2022, 100, 578-597.	2.9	3
2	Modestly increasing systemic interleukin-6 perinatally disturbs secondary germinal zone neurogenesis and gliogenesis and produces sociability deficits. Brain, Behavior, and Immunity, 2022, 101, 23-36.	4.1	6
3	Analyzing mouse neural stem cell and progenitor cellÂproliferation using EdU incorporation andÂmulticolor flow cytometry. STAR Protocols, 2022, 3, 101065.	1.2	2
4	Subventricular zone adult mouse neural stem cells require insulin receptor forÂself-renewal. Stem Cell Reports, 2022, 17, 1411-1427.	4.8	3
5	Moderately Inducing Autophagy Reduces Tertiary Brain Injury after Perinatal Hypoxia-Ischemia. Cells, 2021, 10, 898.	4.1	8
6	Leukemia Inhibitory Factor Is Required for Subventricular Zone Astrocyte Progenitor Proliferation and for Prokineticin-2 Production after a Closed Head Injury in Mice. Neurotrauma Reports, 2021, 2, 285-302.	1.4	4
7	Perinatal IL-1β-induced inflammation suppresses Tbr2+ intermediate progenitor cell proliferation in the developing hippocampus accompanied by long-term behavioral deficits. Brain, Behavior, & Immunity - Health, 2020, 7, 100106.	2.5	10
8	Proneurotrophins Induce Apoptotic Neuronal Death After Controlled Cortical Impact Injury in Adult Mice. ASN Neuro, 2020, 12, 175909142093086.	2.7	5
9	Developmental IL-6 Exposure Favors Production of PDGF-Responsive Multipotential Progenitors at the Expense of Neural Stem Cells and Other Progenitors. Stem Cell Reports, 2020, 14, 861-875.	4.8	13
10	Neuroregenerative and protective functions of Leukemia Inhibitory Factor in perinatal hypoxic-ischemic brain injury. Experimental Neurology, 2020, 330, 113324.	4.1	18
11	TGFβ1: Friend or Foe During Recovery in Encephalopathy. Neuroscientist, 2019, 25, 192-198.	3.5	5
12	Insulin-like Growth Factor II: An Essential Adult Stem Cell Niche Constituent in Brain and Intestine. Stem Cell Reports, 2019, 12, 816-830.	4.8	47
13	Subacute Transplantation of Native and Genetically Engineered Neural Progenitors Seeded on Microsphere Scaffolds Promote Repair and Functional Recovery After Traumatic Brain Injury. ASN Neuro, 2019, 11, 175909141983018.	2.7	12
14	Pediatric brain repair from endogenous neural stem cells of the subventricular zone. Pediatric Research, 2018, 83, 385-396.	2.3	30
15	Tethered growth factors on biocompatible scaffolds improve stemness of cultured rat and human neural stem cells and growth of oligodendrocyte progenitors. Methods, 2018, 133, 54-64.	3.8	12
16	Delayed ALK5 inhibition improves functional recovery in neonatal brain injury. Journal of Cerebral Blood Flow and Metabolism, 2017, 37, 787-800.	4.3	16
17	<i>Olig1</i> is required for nogginâ€induced neonatal myelin repair. Annals of Neurology, 2017, 81, 560-571.	5.3	13
18	Age-Dependent Effects of ALK5 Inhibition and Mechanism of Neuroprotection in Neonatal Hypoxic-Ischemic Brain Injury. Developmental Neuroscience, 2017, 39, 338-351.	2.0	14

#	Article	IF	CITATIONS
19	Special Issue Dedicated to Susan J. Vannucci and Robert C. Vannucci. Developmental Neuroscience, 2017, 39, 5-6.	2.0	0
20	Leukemia Inhibitory Factor Haplodeficiency Desynchronizes Glial Reactivity and Exacerbates Damage and Functional Deficits after a Concussive Brain Injury. Journal of Neurotrauma, 2016, 33, 1522-1534.	3.4	15
21	Astrocyteâ€produced leukemia inhibitory factor expands the neural stem/progenitor pool following perinatal hypoxia–ischemia. Journal of Neuroscience Research, 2016, 94, 1531-1545.	2.9	22
22	Optimizing a multifunctional microsphere scaffold to improve neural precursor cell transplantation for traumatic brain injury repair. Journal of Tissue Engineering and Regenerative Medicine, 2016, 10, E419-E432.	2.7	33
23	Unmasking the responses of the stem cells and progenitors in the subventricular zone after neonatal and pediatric brain injuries. Neural Regeneration Research, 2016, 11, 45.	3.0	6
24	Mechanisms of Mouse Neural Precursor Expansion after Neonatal Hypoxia-Ischemia. Journal of Neuroscience, 2015, 35, 8855-8865.	3.6	37
25	The role of inflammation in perinatal brain injury. Nature Reviews Neurology, 2015, 11, 192-208.	10.1	669
26	Multimarker Flow Cytometric Characterization, Isolation and Differentiation of Neural Stem Cells and Progenitors of the Normal and Injured Mouse Subventricular Zone. , 2015, , 175-186.		3
27	Ionizing Radiation Perturbs Cell Cycle Progression of Neural Precursors in the Subventricular Zone Without Affecting Their Long-Term Self-Renewal. ASN Neuro, 2015, 7, 175909141557802.	2.7	18
28	Insulin and IGF receptor signalling in neural-stem-cell homeostasis. Nature Reviews Endocrinology, 2015, 11, 161-170.	9.6	132
29	Neural Stem Cells in the Immature, but Not the Mature, Subventricular Zone Respond Robustly to Traumatic Brain Injury. Developmental Neuroscience, 2015, 37, 29-42.	2.0	38
30	Insulin-Like Growth Factor Receptor Signaling is Necessary for Epidermal Growth Factor Mediated Proliferation of SVZ Neural Precursors in vitro Following Neonatal Hypoxiaââ,¬â€œlschemia. Frontiers in Neurology, 2014, 5, 79.	2.4	15
31	Molecular features of neural stem cells enable their enrichment using pharmacological inhibitors of survivalâ€promoting kinases. Journal of Neurochemistry, 2014, 128, 376-390.	3.9	9
32	Tumor Necrosis Factor-related Apoptosis-inducing Ligand (TRAIL) Signaling and Cell Death in the Immature Central Nervous System after Hypoxia-Ischemia and Inflammation. Journal of Biological Chemistry, 2014, 289, 9430-9439.	3.4	82
33	Insulin-like Growth Factor-II (IGF-II) and IGF-II Analogs with Enhanced Insulin Receptor-a Binding Affinity Promote Neural Stem Cell Expansion. Journal of Biological Chemistry, 2014, 289, 4626-4633.	3.4	46
34	PDGF-Responsive Progenitors Persist in the Subventricular Zone across the Lifespan. ASN Neuro, 2014, 6, AN20120041.	2.7	13
35	Improvements in biomaterial matrices for neural precursor cell transplantation. Molecular and Cellular Therapies, 2014, 2, 19.	0.2	35
36	Heparin crosslinked chitosan microspheres for the delivery of neural stem cells and growth factors for central nervous system repair. Acta Biomaterialia, 2013, 9, 6834-6843.	8.3	100

#	Article	IF	CITATIONS
37	Vascular Endothelial Growth Factors A and C are Induced in the SVZ Following Neonatal Hypoxia–Ischemia and Exert Different Effects on Neonatal Glial Progenitors. Translational Stroke Research, 2013, 4, 158-170.	4.2	56
38	Identification of Bax-Interacting Proteins in Oligodendrocyte Progenitors during Glutamate Excitotoxicity and Perinatal Hypoxia–Ischemia. ASN Neuro, 2013, 5, AN20130027.	2.7	25
39	Egr-1 is a Critical Regulator of EGF-Receptor-Mediated Expansion of Subventricular Zone Neural Stem Cells and Progenitors During Recovery from Hypoxia–Hypoglycemia. ASN Neuro, 2013, 5, AN20120032.	2.7	19
40	Essays on Citation Classics inDevelopmental Neuroscience. Developmental Neuroscience, 2012, 34, 1-1.	2.0	0
41	Leukemia Inhibitory Factor Is Essential for Subventricular Zone Neural Stem Cell and Progenitor Homeostasis as Revealed by a Novel Flow Cytometric Analysis. Developmental Neuroscience, 2012, 34, 449-462.	2.0	41
42	IGF-II Promotes Stemness of Neural Restricted Precursors. Stem Cells, 2012, 30, 1265-1276.	3.2	75
43	Opposite effect of inflammation on subventricular zone versus hippocampal precursors in brain injury. Annals of Neurology, 2011, 70, 616-626.	5.3	47
44	Pre-Conditioning Induces the Precocious Differentiation of Neonatal Astrocytes to Enhance Their Neuroprotective Properties. ASN Neuro, 2011, 3, AN20100029.	2.7	37
45	Pitfalls in the Quest of Neuroprotectants for the Perinatal Brain. Developmental Neuroscience, 2011, 33, 189-198.	2.0	12
46	TGFß1 Stimulates the Over-Production of White Matter Astrocytes from Precursors of the "Brain Marrow―in a Rodent Model of Neonatal Encephalopathy. PLoS ONE, 2010, 5, e9567.	2.5	39
47	Defining the Critical Period for Neocortical Neurogenesis after Pediatric Brain Injury. Developmental Neuroscience, 2010, 32, 488-98.	2.0	33
48	Activation of the Mammalian Target of Rapamycin (mTOR) Is Essential for Oligodendrocyte Differentiation. Journal of Neuroscience, 2009, 29, 6367-6378.	3.6	233
49	Contextâ€dependent ILâ€6 potentiation of interferon―gammaâ€induced ILâ€12 secretion and CD40 expression murine microglia. Journal of Neurochemistry, 2009, 111, 808-818.	in 3.9	40
50	Ciliary neurotrophic factor (CNTF) plus soluble CNTF receptor α increases cyclooxygenase-2 expression, PGE2release and interferon-γ-induced CD40 in murine microglia. Journal of Neuroinflammation, 2009, 6, 7.	7.2	24
51	Brain Injury Expands the Numbers of Neural Stem Cells and Progenitors in the SVZ by Enhancing Their Responsiveness to EGF. ASN Neuro, 2009, 1, AN20090002.	2.7	54
52	Ciliary neurotrophic factor and interleukinâ€6 differentially activate microglia. Journal of Neuroscience Research, 2008, 86, 1538-1547.	2.9	58
53	Neonatal hypoxic/ischemic brain injury induces production of calretininâ€expressing interneurons in the striatum. Journal of Comparative Neurology, 2008, 511, 19-33.	1.6	80
54	C6-Ceramide-Coated Catheters Promote Re-Endothelialization of Stretch- Injured Arteries. Vascular Disease Prevention, 2008, 5, 200-210.	0.2	6

#	Article	IF	CITATIONS
55	Delayed IGF-1 Administration Rescues Oligodendrocyte Progenitors from Glutamate-Induced Cell Death and Hypoxic-Ischemic Brain Damage. Developmental Neuroscience, 2007, 29, 302-310.	2.0	58
56	Perinatal Hypoxic/Ischemic Brain Injury Induces Persistent Production of Striatal Neurons from Subventricular Zone Progenitors. Developmental Neuroscience, 2007, 29, 331-340.	2.0	49
57	Leukemia inhibitory factor participates in the expansion of neural stem/progenitors after perinatal hypoxia/ischemia. Neuroscience, 2007, 148, 501-509.	2.3	53
58	17β-Estradiol protects the neonatal brain from hypoxia–ischemia. Experimental Neurology, 2007, 208, 269-276.	4.1	44
59	Stem cell therapies for perinatal brain injuries. Seminars in Fetal and Neonatal Medicine, 2007, 12, 259-272.	2.3	22
60	Sustained neocortical neurogenesis after neonatal hypoxic/ischemic injury. Annals of Neurology, 2007, 61, 199-208.	5.3	144
61	Death effector activation in the subventricular zone subsequent to perinatal hypoxia/ischemia. Journal of Neurochemistry, 2007, 103, 1121-1131.	3.9	23
62	CNTF-Activated Astrocytes Release a Soluble Trophic Activity for Oligodendrocyte Progenitors. Neurochemical Research, 2007, 32, 263-271.	3.3	33
63	Astrogliosis is delayed in type 1 interleukin-1 receptor-null mice following a penetrating brain injury. Journal of Neuroinflammation, 2006, 3, 15.	7.2	50
64	Hypoxia/ischemia expands the regenerative capacity of progenitors in the perinatal subventricular zone. Neuroscience, 2006, 139, 555-564.	2.3	123
65	Astrocytes and developmental white matter disorders. Mental Retardation and Developmental Disabilities Research Reviews, 2006, 12, 97-104.	3.6	35
66	Neural Stem/Progenitor Cells Participate in the Regenerative Response to Perinatal Hypoxia/Ischemia. Journal of Neuroscience, 2006, 26, 4359-4369.	3.6	179
67	Cellular Heterogeneity of the Neonatal SVZ and its Contributions to Forebrain Neurogenesis and Gliogenesis. , 2006, , 1-29.		3
68	Responses of the SVZ to Hypoxia and Hypoxia/Ischemia. , 2006, , 242-259.		0
69	Interleukin-1 and the Interleukin-1 Type 1 Receptor are Essential for the Progressive Neurodegeneration that Ensues Subsequent to a Mild Hypoxic/Ischemic Injury. Journal of Cerebral Blood Flow and Metabolism, 2005, 25, 17-29.	4.3	103
70	The Ins2 ^{Akita} Mouse as a Model of Early Retinal Complications in Diabetes. , 2005, 46, 2210.		442
71	Astrocyte Development. , 2005, , 197-222.		5
72	Gray Matter Oligodendrocyte Progenitors and Neurons Die Caspase-3 Mediated Deaths Subsequent to Mild Perinatal Hypoxic/Ischemic Insults. Developmental Neuroscience, 2005, 27, 149-159.	2.0	42

#	Article	IF	CITATIONS
73	Neuroinflammation and Both Cytotoxic and Vasogenic Edema Are Reduced in Interleukin-1 Type 1 Receptor-Deficient Mice Conferring Neuroprotection. Stroke, 2005, 36, 2226-2231.	2.0	74
74	Minocycline Reduces Proinflammatory Cytokine Expression, Microglial Activation, and Caspase-3 Activation in a Rodent Model of Diabetic Retinopathy. Diabetes, 2005, 54, 1559-1565.	0.6	485
75	Divergent glial fibrillary acidic protein and its mRNA in the activated supraoptic nucleus. Neuroscience Letters, 2005, 380, 295-299.	2.1	2
76	Glutamate enhances survival and proliferation of neural progenitors derived from the subventricular zone. Neuroscience, 2005, 131, 55-65.	2.3	139
77	Perinatal Hypoxia/Ischemia Damages and Depletes Progenitors from the Mouse Subventricular Zone. Developmental Neuroscience, 2004, 26, 266-274.	2.0	50
78	Neural Stem Cells in the Subventricular Zone are Resilient to Hypoxia/Ischemia whereas Progenitors are Vulnerable. Journal of Cerebral Blood Flow and Metabolism, 2004, 24, 814-825.	4.3	109
79	Proâ€regenerative properties of cytokineâ€activated astrocytes. Journal of Neurochemistry, 2004, 89, 1092-1100.	3.9	405
80	Interleukinâ€1: A master regulator of neuroinflammation. Journal of Neuroscience Research, 2004, 78, 151-156.	2.9	326
81	Roles of the mammalian subventricular zone in cell replacement after brain injury. Progress in Neurobiology, 2004, 74, 77-99.	5.7	109
82	Astrocytic ceruloplasmin expression, which is induced by IL-1? and by traumatic brain injury, increases in the absence of the IL-1 type 1 receptor. Glia, 2003, 44, 76-84.	4.9	37
83	Enhanced neurogenesis following stroke. Journal of Neuroscience Research, 2003, 73, 277-283.	2.9	82
84	Roles of the mammalian subventricular zone in brain development. Progress in Neurobiology, 2003, 69, 49-69.	5.7	137
85	Astrocytes produce CNTF during the remyelination phase of viral-induced spinal cord demyelination to stimulate FGF-2 production. Neurobiology of Disease, 2003, 13, 89-101.	4.4	91
86	Neural Stem Cells in the Subventricular Zone Are a Source of Astrocytes and Oligodendrocytes, but Not Microglia. Developmental Neuroscience, 2003, 25, 184-196.	2.0	33
87	Damage to the Choroid Plexus, Ependyma and Subependyma as a Consequence of Perinatal Hypoxia/Ischemia. Developmental Neuroscience, 2002, 24, 426-436.	2.0	43
88	Ciliary Neurotrophic Factor Activates Spinal Cord Astrocytes, Stimulating Their Production and Release of Fibroblast Growth Factor-2, to Increase Motor Neuron Survival. Experimental Neurology, 2002, 173, 46-62.	4.1	129
89	Diabetic Retinopathy. Survey of Ophthalmology, 2002, 47, S253-S262.	4.0	499
90	The Type 1 Interleukin-1 Receptor Is Essential for the Efficient Activation of Microglia and the Induction of Multiple Proinflammatory Mediators in Response to Brain Injury. Journal of Neuroscience, 2002, 22, 6071-6082.	3.6	151

#	Article	IF	CITATIONS
91	Differential expression of protein tyrosine kinase genes during microglial activation. Glia, 2002, 40, 11-24.	4.9	32
92	Transforming growth factor ?1 prevents IL-1?-induced microglial activation, whereas TNF?- and IL-6-stimulated activation are not antagonized. Glia, 2002, 40, 109-120.	4.9	78
93	The FLT3 Tyrosine Kinase Receptor Inhibits Neural Stem/Progenitor Cell Proliferation and Collaborates with NGF to Promote Neuronal Survival. Molecular and Cellular Neurosciences, 2001, 18, 381-393.	2.2	32
94	Perinatal Hypoxia-Ischemia Induces Apoptotic and Excitotoxic Death of Periventricular White Matter Oligodendrocyte Progenitors. Developmental Neuroscience, 2001, 23, 203-208.	2.0	128
95	Expression of the anaphylatoxin C5a receptor in the oligodendrocyte lineage. Brain Research, 2001, 894, 321-326.	2.2	35
96	Hypoxia/Ischemia Depletes the Rat Perinatal Subventricular Zone of Oligodendrocyte Progenitors and Neural Stem Cells. Developmental Neuroscience, 2001, 23, 234-247.	2.0	162
97	IL-6-type cytokines enhance epidermal growth factor-stimulated astrocyte proliferation. Glia, 2000, 32, 328-337.	4.9	68
98	Selective Apoptosis Within the Rat Subependymal Zone: A Plausible Mechanism for Determining Which Lineages Develop from Neural Stem Cells. Developmental Neuroscience, 2000, 22, 106-115.	2.0	45
99	Whither Stem Cell Biology?. Developmental Neuroscience, 2000, 22, 5-6.	2.0	1
100	Ceramide-Coated Balloon Catheters Limit Neointimal Hyperplasia After Stretch Injury in Carotid Arteries. Circulation Research, 2000, 87, 282-288.	4.5	59
101	Cycling cells in the adult rat neocortex preferentially generate oligodendroglia. Journal of Neuroscience Research, 1999, 57, 435-446.	2.9	153
102	Ciliary neurotrophic factor induces expression of the IGF type I receptor and FGF receptor 1 mRNAs in adult rat brain oligodendrocytes. Journal of Neuroscience Research, 1999, 57, 447-457.	2.9	25
103	Cycling cells in the adult rat neocortex preferentially generate oligodendroglia. Journal of Neuroscience Research, 1999, 57, 435-446.	2.9	8
104	Ciliary neurotrophic factor stimulates nuclear hypertrophy and increases the GFAP content of cultured astrocytes. Brain Research, 1998, 803, 189-193.	2.2	30
105	Ciliary Neurotrophic Factor Stimulates Astroglial Hypertrophyin Vivoandin Vitro. Experimental Neurology, 1998, 150, 171-182.	4.1	48
106	Expression of Mouse Ovarian Insulin Growth Factor System Components During Follicular Development and Atresia**This work was supported by NIH Grant HD-24565 (to J.M.H.) and an NIH fellowship (to S.A.W) Endocrinology, 1998, 139, 5205-5214.	2.8	75
107	An improved method for propagating oligodendrocyte progenitors in vitro. Journal of Neuroscience Methods, 1997, 77, 163-168.	2.5	21
108	Multipotential and lineage restricted precursors coexist in the mammalian perinatal subventricular zone. Journal of Neuroscience Research, 1997, 48, 83-94.	2.9	161

#	Article	IF	CITATIONS
109	Multipotential and lineage restricted precursors coexist in the mammalian perinatal subventricular zone. Journal of Neuroscience Research, 1997, 48, 83-94.	2.9	3
110	Acute Exposure to CNTFin VivoInduces Multiple Components of Reactive Gliosis. Experimental Neurology, 1996, 141, 256-268.	4.1	103
111	Persistence of Multipotential Progenitors in the Juvenile Rat Subventricular Zone. Developmental Neuroscience, 1996, 18, 255-265.	2.0	31
112	A role for ciliary neurotrophic factor as an inducer of reactive gliosis, the glial response to central nervous system injury Proceedings of the National Academy of Sciences of the United States of America, 1995, 92, 5865-5869.	7.1	156
113	Early patterns of migration, morphogenesis, and intermediate filament expression of subventricular zone cells in the postnatal rat forebrain. Journal of Neuroscience, 1995, 15, 7238-7249.	3.6	182
114	Cytokines regulate IGF binding proteins in the CNS. Progress in Growth Factor Research, 1995, 6, 181-187.	1.6	16
115	The gp 120 glycoprotein of human immunodeficiency virus type 1 binds to sensory ganglion neurons. Annals of Neurology, 1993, 34, 855-863.	5.3	57
116	Both oligodendrocytes and astrocytes develop from progenitors in the subventricular zone of postnatal rat forebrain. Neuron, 1993, 10, 201-212.	8.1	677
117	Astrocyte Origins. , 1993, , 1-22.		7
118	Characterization and Partial Purification of AIM: A Plasma Protein That Induces Rat Cerebral Type 2 Astroglia from Bipotential Glial Progenitors. Journal of Neurochemistry, 1991, 57, 782-794.	3.9	61
119	Differential suppression of interferon-γ-induced la antigen expression on cultured rat astroglia and microglia by second messengersâ~†. Journal of Neuroimmunology, 1990, 29, 213-222.	2.3	31
120	Anti-ganglioside antibodies reveal subsets of cultured rat dorsal root ganglion neurons. Brain Research, 1990, 529, 349-353.	2.2	4
121	Comparison and quantitation of Ia antigen expression on cultured macroglia and ameboid microglia from Lewis rat cerebral cortex: analyses and implications. Journal of Neuroimmunology, 1989, 25, 63-74.	2.3	56
122	Schwann cells influence the expression of ganglioside GD3 by rat dorsal root ganglion neuronsâ~†. Journal of Neuroimmunology, 1989, 24, 223-232.	2.3	9