
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3000628/publications.pdf Version: 2024-02-01

HELENA CHASCH

#	Article	IF	CITATIONS
1	Recommendations for the routine sampling of diatoms for water quality assessments in Europe. Journal of Applied Phycology, 1998, 10, 215-224.	2.8	374
2	Monitoring the effect of chemicals on biological communities. The biofilm as an interface. Analytical and Bioanalytical Chemistry, 2007, 387, 1425-1434.	3.7	341
3	Bridging levels of pharmaceuticals in river water with biological community structure in the llobregat river basin (northeast spain). Environmental Toxicology and Chemistry, 2009, 28, 2706-2714.	4.3	166
4	Triclosan persistence through wastewater treatment plants and its potential toxic effects on river biofilms. Aquatic Toxicology, 2010, 100, 346-353.	4.0	149
5	Primary and complex stressors in polluted mediterranean rivers: Pesticide effects on biological communities. Journal of Hydrology, 2010, 383, 52-61.	5.4	138
6	The effect of biological factors on the efficiency of river biofilms in improving water quality. Hydrobiologia, 2002, 469, 149-156.	2.0	133
7	Effects of low concentrations of the phenylurea herbicide diuron on biofilm algae and bacteria. Chemosphere, 2009, 76, 1392-1401.	8.2	131
8	Short-term toxicity of zinc to microbenthic algae and bacteria in a metal polluted stream. Water Research, 1999, 33, 1989-1996.	11.3	124
9	Trace metal concentration and fish size: Variation among fish species in a Mediterranean river. Ecotoxicology and Environmental Safety, 2014, 107, 154-161.	6.0	120
10	Differences in the sensitivity of benthic microalgae to ZN and CD regarding biofilm development and exposure history. Environmental Toxicology and Chemistry, 2000, 19, 1332-1339.	4.3	117
11	Pharmaceuticals and pesticides in reclaimed water: Efficiency assessment of a microfiltration–reverse osmosis (MF–RO) pilot plant. Journal of Hazardous Materials, 2015, 282, 165-173.	12.4	110
12	LIGHT HISTORY INFLUENCES THE SENSITIVITY TO ATRAZINE IN PERIPHYTIC ALGAE. Journal of Phycology, 1998, 34, 233-241.	2.3	100
13	Assessment of multi-chemical pollution in aquatic ecosystems using toxic units: Compound prioritization, mixture characterization and relationships with biological descriptors. Science of the Total Environment, 2014, 468-469, 715-723.	8.0	92
14	Combined scenarios of chemical and ecological quality under water scarcity in Mediterranean rivers. TrAC - Trends in Analytical Chemistry, 2011, 30, 1269-1278.	11.4	91
15	STRUCTURE AND FUNCTION OF BENTHIC ALGAL COMMUNITIES IN AN EXTREMELY ACID RIVER1. Journal of Phycology, 2003, 39, 481-489.	2.3	88
16	Contrasting effects of organic and inorganic toxicants on freshwater periphyton. Aquatic Toxicology, 2003, 64, 165-175.	4.0	87
17	Title is missing!. Journal of Applied Phycology, 1998, 10, 203-213.	2.8	83
18	Effects of sediment deposition on periphytic biomass, photosynthetic activity and algal community structure. Science of the Total Environment, 2009, 407, 5694-5700.	8.0	83

#	Article	IF	CITATIONS
19	Influence of phosphorus on copper sensitivity of fluvial periphyton: the role of chemical, physiological and community-related factors. Ecotoxicology, 2010, 19, 770-780.	2.4	82
20	Pollution-induced community tolerance to non-steroidal anti-inflammatory drugs (NSAIDs) in fluvial biofilm communities affected by WWTP effluents. Chemosphere, 2014, 112, 185-193.	8.2	80
21	Effects of flow intermittency and pharmaceutical exposure on the structure and metabolism of stream biofilms. Science of the Total Environment, 2015, 503-504, 159-170.	8.0	76
22	Effects of atrazine on periphyton under grazing pressure. Aquatic Toxicology, 2001, 55, 239-249.	4.0	73
23	Ecotoxicological risk assessment of chemical pollution in four Iberian river basins and its relationship with the aquatic macroinvertebrate community status. Science of the Total Environment, 2016, 540, 324-333.	8.0	71
24	SEASONAL VARIATIONS IN PHOTOSYNTHESIS-IRRADIANCE RESPONSES BY BIOFILMS IN MEDITERRANEAN STREAMS1. Journal of Phycology, 1995, 31, 727-735.	2.3	69
25	Nutrient enrichment effects on biofilm metabolism in a Mediterranean stream. Freshwater Biology, 1995, 33, 373-383.	2.4	69
26	In situ spatio-temporal changes in pollution-induced community tolerance to zinc in autotrophic and heterotrophic biofilm communities. Ecotoxicology, 2011, 20, 1823-1839.	2.4	69
27	Changes in atrazine toxicity throughout succession of stream periphyton communities. Journal of Applied Phycology, 1997, 9, 137-146.	2.8	66
28	Water toxicity assessment and spatial pollution patterns identification in a Mediterranean River Basin District. Tools for water management and risk analysis. Science of the Total Environment, 2011, 409, 4269-4279.	8.0	66
29	Phosphate limitation influences the sensitivity to copper in periphytic algae. Freshwater Biology, 2004, 49, 463-473.	2.4	65
30	EFFECT OF COPPER ON ALGAL COMMUNITIES FROM OLIGOTROPHIC CALCAREOUS STREAMS1. Journal of Phycology, 2002, 38, 241-248.	2.3	64
31	Fluvial biofilms: A pertinent tool to assess β-blockers toxicity. Aquatic Toxicology, 2010, 96, 225-233.	4.0	64
32	The effect of metals on photosynthesis processes and diatom metrics of biofilm from a metal-contaminated river: A translocation experiment. Ecological Indicators, 2012, 18, 620-631.	6.3	64
33	Diurnal variation in dissolved oxygen and carbon dioxide in two low-order streams. Water Research, 1998, 32, 1067-1074.	11.3	61
34	Consistency in Diatom Response to Metal-Contaminated Environments. Handbook of Environmental Chemistry, 2012, , 117-146.	0.4	59
35	Chl-a fluorescence parameters as biomarkers of metal toxicity in fluvial biofilms: an experimental study. Hydrobiologia, 2011, 673, 119-136.	2.0	55
36	The effect of copper exposure on a simple aquatic food chain. Aquatic Toxicology, 2003, 63, 283-291.	4.0	50

#	Article	IF	CITATIONS
37	Title is missing!. Journal of Applied Phycology, 2002, 14, 41-48.	2.8	49
38	Effects of chronic copper exposure on fluvial systems: Linking structural and physiological changes of fluvial biofilms with the in-stream copper retention. Science of the Total Environment, 2009, 407, 5274-5282.	8.0	48
39	Comparing the response of biochemical indicators (biomarkers) and biological indices to diagnose the ecological impact of an oil spillage in a Mediterranean river (NE Catalunya, Spain). Chemosphere, 2007, 66, 1206-1216.	8.2	46
40	Are pharmaceuticals more harmful than other pollutants to aquatic invertebrate species: A hypothesis tested using multi-biomarker and multi-species responses in field collected and transplanted organisms. Chemosphere, 2011, 85, 1548-1554.	8.2	46
41	Multipleâ€ s tressor effects on river biofilms under different hydrological conditions. Freshwater Biology, 2016, 61, 2102-2115.	2.4	43
42	The relevance of the community approach linking chemical and biological analyses in pollution assessment. TrAC - Trends in Analytical Chemistry, 2009, 28, 619-626.	11.4	40
43	Use of multivariate analyses to investigate the contribution of metal pollution to diatom species composition: search for the most appropriate cases and explanatory variables. Hydrobiologia, 2009, 627, 143-158.	2.0	38
44	Is chemical contamination linked to the diversity of biological communities in rivers?. TrAC - Trends in Analytical Chemistry, 2009, 28, 592-602.	11.4	38
45	Influence of the interaction between phosphate and arsenate on periphyton's growth and its nutrient uptake capacity. Science of the Total Environment, 2015, 503-504, 122-132.	8.0	38
46	Does Grazing Pressure Modify Diuron Toxicity in a Biofilm Community?. Archives of Environmental Contamination and Toxicology, 2010, 58, 955-962.	4.1	37
47	Biotic and Abiotic Factors Influencing Arsenic Biogeochemistry and Toxicity in Fluvial Ecosystems: A Review. International Journal of Environmental Research and Public Health, 2020, 17, 2331.	2.6	37
48	Influence of Phosphate on the Response of Periphyton to Atrazine Exposure. Archives of Environmental Contamination and Toxicology, 2007, 52, 32-37.	4.1	35
49	Efficiency of cadmium chelation by phytochelatins in Nitzschia palea (Kützing) W. Smith. Ecotoxicology, 2014, 23, 285-292.	2.4	35
50	Drought episode modulates the response of river biofilms to triclosan. Aquatic Toxicology, 2013, 127, 36-45.	4.0	33
51	Seasonal changes in antioxidant enzyme activities of freshwater biofilms in a metal polluted Mediterranean stream. Science of the Total Environment, 2013, 444, 60-72.	8.0	32
52	Short-term arsenic exposure reduces diatom cell size in biofilm communities. Environmental Science and Pollution Research, 2016, 23, 4257-4270.	5.3	31
53	Effects of copper on algal communities at different current velocities. Journal of Applied Phycology, 2002, 14, 391-398.	2.8	30
54	Discharge and the response of biofilms to metal exposure in Mediterranean rivers. Hydrobiologia, 2010, 657, 143-157.	2.0	29

#	Article	IF	CITATIONS
55	Behavioural and physical effects of arsenic exposure in fish are aggravated by aquatic algae. Aquatic Toxicology, 2014, 156, 116-124.	4.0	29
56	Antioxidant enzyme activities as biomarkers of Zn pollution in fluvial biofilms. Ecotoxicology and Environmental Safety, 2012, 80, 172-178.	6.0	28
57	Antioxidant enzyme activities in biofilms as biomarker of Zn pollution in a natural system: An active bio-monitoring study. Ecotoxicology and Environmental Safety, 2014, 103, 82-90.	6.0	27
58	Light History Influences the Response of Fluvial Biofilms to <scp><scp>Zn</scp></scp> Exposure. Journal of Phycology, 2012, 48, 1411-1423.	2.3	26
59	Light history modulates antioxidant and photosynthetic responses of biofilms to both natural (light) and chemical (herbicides) stressors. Ecotoxicology, 2012, 21, 1208-1224.	2.4	25
60	Cumulative Stressors Trigger Increased Vulnerability of Diatom Communities to Additional Disturbances. Microbial Ecology, 2015, 70, 585-595.	2.8	25
61	Influence of grazing on triclosan toxicity to stream periphyton. Freshwater Biology, 2016, 61, 2002-2012.	2.4	25
62	Size-related effects and the influence of metabolic traits and morphology on swimming performance in fish. Environmental Epigenetics, 2020, 66, 493-503.	1.8	25
63	The role of drought in the impact of climatic change on the microbiota of peatland streams. Freshwater Biology, 1994, 32, 223-230.	2.4	24
64	Stromatolitic communities in Mediterranean streams: adaptations to a changing environment. Biodiversity and Conservation, 2000, 9, 379-392.	2.6	23
65	Arsenic toxicity effects on microbial communities and nutrient cycling in indoor experimental channels mimicking a fluvial system. Aquatic Toxicology, 2015, 166, 72-82.	4.0	23
66	Catalase in fluvial biofilms: a comparison between different extraction methods and example of application in a metal-polluted river. Ecotoxicology, 2011, 20, 293-303.	2.4	21
67	The Use of Photosynthetic Fluorescence Parameters from Autotrophic Biofilms for Monitoring the Effect of Chemicals in River Ecosystems. Handbook of Environmental Chemistry, 2012, , 85-115.	0.4	20
68	Measuring in-stream retention of copper by means of constant-rate additions. Science of the Total Environment, 2009, 407, 3847-3854.	8.0	17
69	Metal Ecotoxicology in Fluvial Biofilms: Potential Influence of Water Scarcity. Handbook of Environmental Chemistry, 2010, , 41-53.	0.4	17
70	Mutual interaction between arsenic and biofilm in a mining impacted river. Science of the Total Environment, 2018, 636, 985-998.	8.0	17
71	Responses of resident (DNA) and active (RNA) microbial communities in fluvial biofilms under different polluted scenarios. Chemosphere, 2020, 242, 125108.	8.2	16
72	Effects of low arsenic concentration exposure on freshwater fish in the presence of fluvial biofilms. Science of the Total Environment, 2016, 544, 467-475.	8.0	15

#	Article	lF	CITATIONS
73	Structural and functional responses of periphyton and macroinvertebrate communities to ferric Fe, Cu, and Zn in stream mesocosms. Environmental Toxicology and Chemistry, 2018, 37, 1320-1329.	4.3	15
74	Changes in the microbial communities along the environmental gradient created by a small Fe spring. Freshwater Science, 2012, 31, 599-609.	1.8	14
75	Experimental evaluation of the contribution of acidic pH and Fe concentration to the structure, function and tolerance to metals (Cu and Zn) exposure in fluvial biofilms. Ecotoxicology, 2014, 23, 1270-1282.	2.4	14
76	A novel Cyphos IL 104-based polymer inclusion membrane (PIM) probe to mimic biofilm zinc accumulation. Science of the Total Environment, 2020, 715, 136938.	8.0	14
77	Diatom responses to zinc contamination along a Mediterranean river. Plant Ecology and Evolution, 2014, 147, 325-332.	0.7	13
78	Examining predictors of chemical toxicity in freshwater fish using the random forest technique. Environmental Science and Pollution Research, 2017, 24, 10172-10181.	5.3	13
79	Advances in the Multibiomarker Approach for Risk Assessment in Aquatic Ecosystems. Handbook of Environmental Chemistry, 2012, , 147-179.	0.4	11
80	The use of antioxidant enzymes in freshwater biofilms: Temporal variability vs. toxicological responses. Aquatic Toxicology, 2013, 136-137, 60-71.	4.0	11
81	Is the toxicity of pesticide mixtures on river biofilm accounted for solely by the major compounds identified?. Environmental Science and Pollution Research, 2015, 22, 4009-4024.	5.3	11
82	Interactions between microplastics and benthic biofilms in fluvial ecosystems: Knowledge gaps and future trends. Freshwater Science, 2022, 41, 442-458.	1.8	10
83	Ecological factors that co-occur with geosmin production by benthic cyanobacteria. The case of the Llobregat River. Algological Studies, 2003, 109, 579-592.	0.1	9
84	How to Link Field Observations with Causality? Field and Experimental Approaches Linking Chemical Pollution with Ecological Alterations. Handbook of Environmental Chemistry, 2012, , 181-218.	0.4	9
85	Water Flow and Light Availability Influence on Intracellular Geosmin Production in River Biofilms. Frontiers in Microbiology, 2019, 10, 3002.	3.5	9
86	Establishing potential links between the presence of alkylphenolic compounds and the benthic community in a European river basin. Environmental Science and Pollution Research, 2012, 19, 934-945.	5.3	8
87	Antioxidant system status in threatened native fish Barbus meridionalis from the Osor River (Iberian) Tj ETQq1 2 2020, 79, 103428.	1 0.784314 4.0	rgBT /Over 8
88	Estimation of the annual primary production of stream epilithic biofilms based on photosynthesisirradiance relations. Fundamental and Applied Limnology, 1998, 141, 469-481.	0.7	8
89	Microbial Biomarkers. , 2017, , 251-281.		7
90	Combined effects of hydrologic alteration and cyprinid fish in mediating biogeochemical processes in a Mediterranean stream. Science of the Total Environment, 2017, 601-602, 1217-1225.	8.0	6

#	Article	IF	CITATIONS
91	DIFFERENCES IN THE SENSITIVITY OF BENTHIC MICROALGAE TO ZN AND CD REGARDING BIOFILM DEVELOPMENT AND EXPOSURE HISTORY. Environmental Toxicology and Chemistry, 2000, 19, 1332.	4.3	6
92	The Use of Biofilms to Assess the Effects of Chemicals on Freshwater Ecosystems. , 2016, , 125-144.		6
93	Response of stream ecosystem structure to heavy metal pollution: context-dependency of top-down control by fish. Aquatic Sciences, 2022, 84, 1.	1.5	5
94	Assessing the ecological integrity after nutrient inputs in streams: The relevance of the observation scale. Aquatic Ecosystem Health and Management, 2005, 8, 397-403.	0.6	4
95	Impacts of damming and climate change on the ecosystem structure of headwater streams: a case study from the Pyrenees. Inland Waters, 2022, 12, 434-450.	2.2	3
96	Discharge and the response of biofilms to metal exposure in Mediterranean rivers. , 2010, , 143-157.		0